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We study the dynamics of macroscopic observables such as the magnetization and the energy per
degree of freedom in Ising spin models on random graphs of finite connectivity, with random bonds and/or
heterogeneous degree distributions. To do so, we generalize existing versions of dynamical replica theory
and cavity field techniques to systems with strongly disordered and locally treelike interactions. We
illustrate our results via application to, e.g., �J spin glasses on random graphs and of the overlap in finite
connectivity Sourlas codes. All results are tested against Monte Carlo simulations.
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Recent years have witnessed a surge of interest in the
study of finitely connected disordered spin systems. From a
physical point of view, despite their lack of a realistic
geometry and their mean-field nature, the finite number
of neighbors per spin in such models does give rise to a
nontrivial local geometry and ensuing artifacts. Here we
simply regard the random bond finite connectivity Ising
spin system as the archetypal interacting particle model on
a disordered random graph. Such models are important in
the understanding of algorithmic complexity in theoretical
computer science [1–3], and also underlie recent theoreti-
cal advances for an important class of error correcting
codes [4–6]. It has been shown that the tuning of the
degree distribution and/or the connectivity strengths in
complex networks can lead to atypical mean-field critical
phenomena [7–9], and they are now increasingly and
fruitfully used for modeling neural, social, Internet, gene
regulatory, and proteomics networks [10–13]. While our
quantitative understanding of the equilibrium properties of
these systems is quite advanced (see, e.g., [14,15]), the
tools available for studying their nonequilibrium behavior
are comparatively poor. There has been some progress in
applying the path integral techniques of [16] to spherical
and related models [17], and to Ising models with parallel
spin updating [18,19]. Generalizing such approaches to
Ising spin models with Glauber-type dynamics requires
the treatment of nontrivial functional order parameters
that have, as yet, not been adequately controlled. An alter-
native approach, which we follow here, is to generalize the
techniques of dynamical replica theory [20], together with
the cavity field concept, to finitely connected disordered
spin systems. This approach has already proven fruitful for
weakly disordered dilute ferromagnets [21] where each
spin is effectively in an identical environment. In this
Letter, in contrast, we study the dynamics of strongly
disordered versions of finitely connected Ising systems,
where each spin is in a highly heterogeneous environment,
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due to the presence of either random bonds or nodes with
variable degrees.

Our model consists of N Ising spins si 2 f�1; 1g, i �
1; . . . ; N, whose mutual interactions are characterized by a
range-free symmetric adjacency matrix with entries cij 2
f0; 1g and symmetric bonds Jij 2 IR. We define cii � 0,
and draw the bond strengths Jij independently from some
distribution Q�J�. The probability of finding any state s �
�s1; . . . ; sN� of the system at time t is given by the measure
pt�s�, which evolves as the spins align asynchronously and
stochastically to their local fields, according to a Glauber
dynamics in the form of the master equation

d
dt
pt�s� �

XN
k�1

�pt�Fks�wk�Fks� � pt�s�wk�s��; (1)

where Fks � �s1; . . . ;�sk; . . . ; sN� is the kth spin-flip op-
erator and the transition rates wk�s� have the standard form

wk�s� � 1
2f1� sk tanh��hk�s��g (2)

with the local fields hi�s� � �j�icijJijsj 	 �. This process
evolves toward equilibrium, with the Boltzmann measure
and with Hamiltonian

H�s� � �
X
i<j

sicijJijsj � �
X
i

si: (3)

Following the procedure outlined for fully connected
systems [20], we consider the evolution of two macro-
scopic observables, the magnetization m�s� � N�1�isi,
and the internal energy e�s� � �N�1�i<jcijJijsisj. We
abbreviate � � �m; e�. One easily derives a Kramers-
Moyal (KM) expansion for their probability density
P t��� � �spt�s�������s��; see, e.g., [22]. On finite
times one finds that only the first (so-called Liouville) term
in the KM expansion survives the thermodynamic limit, so
the observables �m; e� evolve deterministically, i.e.,
limN!1Pt��� � �����t� with
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d
dt

�t � lim
N!1

X
s
pt�sj�t�

X
i

wi�s����Fis� ���s��; (4)

pt�sj�� �
pt�s�������s��P

s0
pt�s0�������s0��

: (5)

Equation (4) still involves the conditional microscopic dis-
tribution pt�sj��. To proceed, we follow [20]: (i) we as-
sume that the observables � are self-averaging at all times
(which one expects to be true), and (ii) we approximate the
microscopic measure pt�sj�� by the maximum entropy
distribution given the condition that the macroscopic ob-
servables take the value �. These assumptions imply that
our observables evolve according to

d
dt
mt � �mt 	

Z
dhD�hjmt; et� tanh��h�; (6)

d
dt
et � �2et �

Z
dhD�hjmt; et�h tanh��h�: (7)

Here D�hjmt; et� denotes the asymptotic distribution of lo-
cal fields in a system with magnetization mt and energy et,

D �hjet; mt� � lim
N!1

1

N

XN
i�1

�h��h� hi�s��imt;et�dis; (8)

where the average h
 
 
imt;et is over the maximum entropy
distribution given the values of the observables, viz., over
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p�sjmt; et� �
��mt �m�s����et � e�s��P

s0
��mt �m�s0����et � e�s0��

(9)

and �
 
 
�dis is over the disorder (the realization of the
random graph and bonds).

The relatively simple solution in [21] can be understood
within this framework. Since all sites were identical, there
was just a single cavity field. Hence the distribution of
local fields was uniform across sites and could be given
explicitly in terms of the observables.

The field distribution D�hjmt; et� is readily calculated,
even in the presence of bond or degree disorder, either via
the replica method or via the cavity approach for dilute
systems [14] (in the microcanonical or the canonical
framework, respectively) [23]. Here the resulting equations
from either approach are the same. They correspond to the
maximum entropy distribution, given �mt; et�, which
equals the equilibrium distribution of a system with
Hamiltonian (3) but with a pseudo inverse temperature �̂
and pseudo external field �̂=�̂. These act as Lagrange
parameters, enforcing the condition that the equilibrium
distribution gives the required values of �mt; et�. The prefix
‘‘pseudo’’ indicates that these parameters need not be
physical: there could be states �mt; et� for which �̂ is
negative. More specifically, the replica method allows us
to perform the disorder average in (8), using the identity
�X
s
��h� hi�s��p�sjmt; et�

�
dis
� lim

n!0

X
s1;...;sn

�
��h� hi�s1��

Yn
��1

���mt �m�s�����et � e�s����
�

dis
(10)
followed by making the so-called replica symmetric (RS)
ansatz for the emerging (dynamical) order parameters.
Within the cavity formalism we can work either with the
ensemble or with a particular realization of the disorder.
The latter tends to be numerically simpler, due to the
inherent (finite size) noise in population dynamics, which
limits the accuracy with which the Lagrange parameters
can be calculated. Working in areas of phase space where
replica symmetry is expected to be exact and where our
belief propagation algorithm [24] converged, it was pos-
sible to find the Lagrange parameters to high precision
(fixed points of the belief propagation algorithm describe
minima of the Bethe free energy [25]). For large graph
sizes the differences between results for graph realization
and the ensemble average ought to vanish.

The resulting numerical algorithm is as follows. At any
given point in time we know the instantaneous values
(mt; et) of our observables. We then run a belief propaga-
tion algorithm [24] on our graph, for a given pair of
Lagrange parameters (�̂; �̂) which act as inverse tempera-
ture and external field; once the belief propagation has
converged, we can measure [mt��̂; �̂�; et��̂; �̂�]. We now
vary the Lagrange parameters and repeat the above until
we satisfy the condition

mt � mt��̂; �̂�; et � et��̂; �̂�: (11)
Finally we use the cavity fields generated with the correct
values of ��̂; �̂� to give the local field distribution within
our graph, with which we can evaluate the force terms in
(6) and (7). We should emphasize that the status of the
above procedure is only that of a numerical tool with which
to solve the dynamical order parameters from the closed
equations provided by the dynamical replica theory, and
hence generate the theoretical predictions for the dynamics
of an infinitely large system. It should not be confused with
microscopic Monte Carlo (MC) simulations of the under-
lying spin system, as, e.g., employed below.

In Fig. 1 we compare the results of our analysis with
MC simulations for a �J spin glass on a 3-regular graph.
We sampled our graph uniformly from all connected
graphs where each site has exactly three neighbors and
each bond is drawn independently from Q�J� � ���J�
1� 	 �1� ����J	 1�. All MC simulations were carried
out with a system size of N � 10 000 and were run on the
same realization of the graph as the cavity field calcula-
tions. We see an excellent correspondence between theory
and MC simulations. We have taken � to be relatively large
(predominance of ferromagnetic bonds), since we did not
wish to move into a region where belief propagation would
not converge, a condition one expects to be closely related
to instability in the de Almeida–Thouless (AT) sense
[26,27]. In such regions it is no longer possible to use
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FIG. 1. Evolution of the magnetization m (top) and the energy
e (bottom), for Ising spins on a 3-regular random graph with
random bonds, and with time measured in units of updates per
spin. Bond distribution: Q�J� � ���J� 1� 	 �1� ����J	 1�.
Solid lines denote the theoretical predictions. Dotted lines rep-
resent the MC simulation data (system size N � 10 000 and
averaged over 50 runs), with dot-dashed lines giving the aver-
ages �1 standard deviation. Left: � � 0:95 and � � 0:65.
Right: � � 0:97 and � � 1:2.
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belief propagation for accurately evaluating the Lagrange
parameters �̂ and �̂.

It is also of interest to note in Fig. 2 that the evolution of
the pseudo inverse temperature need not be monotonic.
Assuming that the location of the AT line [26] is similar to
that of the fully connected case, i.e., that it goes continu-
ously from the zero-temperature instability (T � 0, � �
11
12 ) [28,29] to the triple point (T � 1:13, � � 0:85), as in
[27], one could have a situation where starting from a RS
phase, the parameters (�;�) could be chosen such that the
final equilibrium phase was also RS, but where the dynam-
ics takes the system through a regime of phase space where
in equilibrium one would find replica symmetry breaking.
Since there the belief propagation (or any other replica
symmetric) algorithm would not converge in a time of
O�N�, the algorithm would become stuck en route to RS
equilibrium.
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FIG. 2. Evolution of the pseudo inverse temperature Lagrange
parameter �̂ for the experiments shown in Fig. 1. Clearly, the
relaxation of �̂ need not be monotonic.
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In Fig. 3 we examine the order parameter flow in ferro-
magnetic random graphs with average connectivity 2 and
3, respectively. Here each bond is independently defined to
be present (cij � 1) with probability c=N, where c is the
average connectivity, leading to a graph with a Poisson
degree distribution (or Erdös-Rényi graph). In these sys-
tems the inhomogeneity of the local environment of the
spins is no longer caused by bond disorder, but by nonuni-
form connectivity. The agreement between theory and MC
simulations in the case c � 2 is significantly worse than
that in the other examples presented. The maximum en-
tropy measure appears to be a much less accurate approxi-
mation of the true microscopic distribution, which tells us
that the system evolves through statistically atypical mi-
croscopic states, and predicts a relaxation of the order pa-
rameters that is far too quick. This would appear to be re-
lated to the increased heterogeneity associated with lower
temperatures and lower average connectivity. However,
plotting in them-e plane we see that the predicted direction
of the flow is still quite reasonable.

As a final example, we turn to the decoding dynamics of
finite connectivity Sourlas codes [4,5,30] with 2-body
interactions, which can easily be studied within the current
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FIG. 3. Evolution of the magnetization m (top) and the energy
e (bottom), for Ising spins on a Poisson random graph (of
average connectivity c) with ferromagnetic bonds Jij � 1, and
with time measured in units of updates per spin (top 4 graphs) or
flow in m-e place (bottom 2 graphs). Solid lines denote the
theoretical predictions. Dotted lines represent the MC simulation
data (system size N � 10 000 and averaged over 50 runs), with
dot-dashed lines giving the averages �1 standard deviation.
Left: c � 2 and T � 0:75. Right: c � 3 and T � 2:8.
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FIG. 4. Decoding dynamics of the overlap O (left) and the
magnetization m (right), for a 2-body interaction and rate 2

3

Sourlas error correcting code. Solid lines denote the theoretical
predictions. Dotted lines represent the MC simulation data
(system size N � 10 000 and averaged over 50 runs), with dot-
dashed lines giving the averages �1 standard deviation. The
temperature is Nishimori’s temperature for the flip probability
(error rate) 0.04.
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framework. In particular, in Fig. 4 we consider the case of
an unbiased source broadcasting through a binary symmet-
ric channel with flip probability 0.04 and rate 2

3 (the channel
capacity as given by Shannon’s theorem is 0.76. . .). If a
message ��1; . . . ; �N� is sent across this channel, and our
estimator for this message (given the corrupt channel) is
given by ��̂1; . . . ; �̂N�, then a natural performance measure
is the overlap between the message sent and the decoded
message, O � N�1�i�i�̂i. We decode at Nishimori’s tem-
perature, which is the temperature maximizing this par-
ticular overlap observable [31] (the so-called maximizer of
posterior marginals). Although qualitatively correct, the
predicted relaxation of the order parameters is again too
fast compared with the MC simulation data.

In this Letter we have presented a relatively simple
dynamical formalism, combining dynamical replica theory
with the cavity method, to be used as a systematic approxi-
mation tool with which to understand the main features of
the dynamics of dilute and disordered spin systems. We
regard the wide applicability of the method as its strength.
From the various applications presented here we see that
our approach performs excellently in some cases, but
relaxes too quickly in others, compared with numerical
MC simulations. This is not unexpected [20]. However, as
with the original dynamical replica theory, there is scope
for increasing the order parameter set [20,21], which
should improve its accuracy systematically, albeit at a
numerical cost. At present our method requires the con-
vergence of belief propagation. It would therefore seem
that breaking replica symmetry within this formalism will
be nontrivial to implement, even though theoretically it is a
straightforward generalization. For a single experiment we
here run belief propagation O�105� times; running a finite
temperature one step replica symmetry breaking scheme
that many times would be computationally extremely de-
manding without further approximations.
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T. Nikoletopoulos for helpful discussions and comments.
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