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Nucleation Rates for High Supersaturations
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A new asymptotic expression for the stationary nucleation flux is obtained. The result provides a
nontrivial generalization of the classical expression attributed to Zeldovich, and has a much broader
domain of applicability. For extremely high supersaturations when the critical cluster number does not
exceed a few units, the preexponential of the nucleation rate exhibits an oscillatory behavior. The latter
effect increases for systems with high interfacial tension.
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Introduction.—Nucleation is a typical pathway for an
activation decay of a metastable state with an enormous
amount of applications ranging from biological [1] to
cosmological systems [2]. Although in each specific case
a nucleating system exhibits its own individual character-
istics, there exist certain universal features which are best
captured by the classical theory of Refs. [3] [see also
textbook introductions [4,5] into the classical thermody-
namics and kinetics of nucleation, respectively]. Those
features are the competition between the surface and vol-
ume contributions to the free energy when a nucleus is
formed, and the possibility to describe the kinetics as a
random walk of nuclei in the space of their sizes.

The classical theory emphasizes the asymptotic nature
of the nucleation problem which has two large dimension-
less parameters—the reduced nucleation barrier Wc=T
(Boltzmann constant is taken as 1) and the number of
monomers in a critical cluster, nc. If a certain hierarchy
between these two parameters is established, namely nc ��������������
Wc=T

p
� 1, one can write down an explicit elementary

expression for the nucleation rate, known as the Zeldovich
approximation (ZA) [3] which has strong similarities to the
Kramers flux [6]. Generalizations of the one-dimensional
ZA to an infinite dimensional space of the parameters of a
nucleus, mostly due to Langer [7], serve as a basis for
modern field-theoretic descriptions of nucleation. Within
the classical framework [3] time-dependent generaliza-
tions of the ZA are available [8,9] with similar (somewhat
stronger) requirements of a large barrier and a large critical
size.

On the other hand, while the condition of a large barrier
is indeed crucial for the formulation of the nucleation
problem (otherwise, a ‘‘metastable state’’ is not well de-
fined) the condition of a large nc is not. In fact, in many
experimental situations the latter is quite modest, of the
order of 101 or even less, in order for nucleation to be
observable. Related computer studies, e.g., Ref. [10], often
also deal with quite modest values of nc. Similarly, in a few
available ‘‘first-principles’’ (nonclassical) examples of nu-
cleation in lattice systems [11] (which can be considered as
a discrete counterpart of field-theoretic nucleation) the
reduced barrier is large, but the critical size is a finite
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discrete parameter. At the same time, the ZA does not
exhibit any nontrivial dependence on nc which can be
scaled out from the preexponential of the nucleation rate,
while the exponential part depends only on the barrier.

An alternative would be to consider the stationary flux in
terms of exact sums, first introduced into the nucleation
problem by Farkas [3]. Those sums, however, formally
depend on kinetic coefficients at all cluster sizes and their
analytical structure as well as sensitivity to the barrier and
nc appear to be unknown beyond the continuous approxi-
mation (which is equivalent to the ZA). Traditionally the
ZA was associated with the domain of applicability of an
asymptotic treatment and whenever the accuracy of the
latter was deemed insufficient the exact expression had
been invoked.

The goal of this study, nevertheless, is to show that there
exists an intermediate asymptotic regime which extends
well beyond the ZA and which describes rather strong
discreteness effects. At the same time, similarly to the
ZA and in contrast to the exact expression, the flux in
this intermediate regime is sensitive only to properties of
near-critical clusters. Since the ZA emerges as a large-nc
limit of a more general expression, the analytical structure
of the leading corrections to the ZA, as well as the precise
domain of its applicability, can be elucidated.

In what follows, the classical ‘‘Becker-Döring’’ nuclea-
tion equation, Eq. (1), will be treated as an exact one and
asymptotic approximations to the solution of this equation
will be constructed. Less formally, since small cluster
numbers n will be considered it could be useful to provide
some justification of using the classical approach [3] and to
understand its potential limitations.

A first-principles derivation of the Becker-Döring equa-
tion remains a challenging problem and even for lattice
systems it is usually associated with larger clusters [12]
when discreteness effects are not too important. For
smaller n it is hard to justify using a macroscopic ‘‘surface
plus volume’’ expression for the thermodynamics of a
nucleus, which smoothly depends on n, while treating n
as a discrete variable when describing kinetics. Conversely,
in a few available discrete nonclassical examples [13] one
observes a rugged n dependence of the work required to
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form a given nucleus, the functionW�n� below. In addition,
the same number n can correspond to clusters of different
shapes with a resulting branching of the nucleation path; in
those cases the validity of the one-dimensional random
walk picture remains unclear. Nevertheless at least in the
stationary treatment there are selected ‘‘magic’’ values of
n, for which analogs of a one-dimensional sum, similar to
Eq. (3) below, can be written for nonclassical kinetics
[13,14]. Those sums have smooth dependences of the
contributing values of W on the summation index. This
bolsters one’s confidence in a strongly discrete master
equation of type (1), which in the spirit of Ref. [3] has
smooth coefficients, even if the discrete variable does not
necessarily coincide with the number of monomers in a
cluster.

The master equation of the classical nucleation problem
has the form

dfn=dt � jn � jn�1; jn � ��n� 1�fn�1 � ��n�fn:

(1)

Here fn is the distribution function of nuclei and jn is the
flux; ��n� and ��n� are the gain and loss coefficients, re-
spectively. The latter can be excluded using the detailed
balance condition ��n� � ��n� 1� expf�W�n� �W�n�
1��=Tg. The work W�n� (which is expected to be known
from thermodynamics) is related to the quasiequilibrium
distribution by

feq
n � A exp��W�n�=T� (2)

with A being a constant which depends on normalization.
The function W�n� has a maximum at some n � nc

which is the ‘‘critical size’’ and Wc 	 W�nc� represents
the barrier to nucleation. The value of nc depends on
supersaturation and does not have to be an integer number.
If the barrier is large compared to T, for an exponentially
long time the depletion of the metastable phase can be
neglected and the boundary conditions will be taken as
f1 � feq

1 � const and fn ! 0 for n! 1 [for a mathe-
matically controlled study of the role of boundary condi-
tions in the Becker-Döring equation, see Ref. [15] ]. Those
conditions lead to an n-independent stationary flux

J�1 �
X1
n�1

1=��n�feq
n (3)

similar to the one originally obtained by Farkas [3].
The continuous approximation to the above sum (and

asymptotic evaluation of the resulting integral) is equiva-
lent to the ZA:

JZA �
��nc�
�

����
�
p A exp

�
�
Wc

T

�
(4)

with � � �� 1
2T

d2W�n�
dn2 �

�1=2 at n � nc. The ZA is valid for
Wc=T � 1 and � * 1; in the latter case a strong inequality
is not required, as will be shown below.
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When generalizing the ZA, the condition � * 1 will be
relaxed. One still can perform parabolic expansions of
W�n� [and also of ��n�] near nc, but in a general case the
sum (3) cannot be replaced by an integral. One has

J�1 ’
1

��nc�
A�1 exp

�
Wc

T

�



X1
n�1

exp
�
�

�
n� nc

��

�
2
� ��n� nc�

�
; (5)

where �� � �=
������������������
1��2�

p
with � � 1

2 �ln��
00
c and � �

�ln��0c. For a large barrier with �� � nc and the sum is
insensitive to the precise location of the lower boundary
which thus can be replaced by a �1. Then, using the fact
that the summation index can be shifted by an arbitrary
integer value, one obtains

J�1 ’
A�1

��nc�
exp

�
W�
T

� X1
k��1

exp
�
�

�
k� fn�g

��

�
2
�
: (6)

Here fn�g is the ‘‘fractional part’’ of the critical size n� �
nc � �2

��=2 adjusted for the n dependence of � and the
corrected barrier is defined as W� � Wc � T�2

��
2=4.

Introducing one imaginary and one real parameter

z � ifn�g=�2
�; q � exp��1=�2

�� (7)

one can express the above sum in terms of an elliptic theta
function #3�z; q� as defined in Ref. [16]. Thus,

J ’ A��nc�q
�fn�g2�#3�z; q��

�1 exp
�
�
W�
T

�
: (8)

This is the main result of the present work. Note the
oscillatory behavior of the preexponential as a function of
n� if all other parameters are fixed. In reality, oscillations
can be masked by the nc dependence of other parameters
and are expected to be observable only for small �� (which
implies either a small nc or a large barrier Wc=T � n2

c).
Transition to the ZA will be considered for integer n�

using an identity

#3�0; q� �
��������������������
2K�m�=�

p
; (9)

where K�m� is an elliptic integral [16] andm is related to q
by

q � exp���K�1�m�=K�m��: (10)

Continuous limit is approached for m! 1 where K�m�
logarithmically diverges. Expanding both expressions near
m � 1 and using the definition of q in Eq. (7), one obtains

J ’
��nc�
��

����
�
p A exp

�
�
W�
T

�
�1� 2e��2

��
2
� . . .�: (11)

The leading term corresponds to the ZA corrected for n
dependence of � within the continuous approximation.
The next term in Eq. (11) describes the discreteness effects.
1-2



2 3 4 5 6 7
nc

0.5

1

1.5

2

2.5

3

3.5

4
reduced flux

FIG. 1 (color online). Reduced nucleation flux J=JZA as a
function of nc � 2�3=s3, s being the dimensionless supersatura-
tion. Parameter � was chosen as 100 to ensure noticeable
oscillations. Solid line—elliptic theta-function approximation,
Eq. (8). Symbols—exact (numerical) data.
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Note the exceptionally small numerical values of the latter
even for �� 
 1.

In the opposite case of �� � 1 when the discreteness
effects dominate, at most two terms (and for nonspecial
values of the supersaturation only one term) contribute to
the sum (6), which explains an oscillatory behavior as a
function of nc. There is a limit of how small the latter can
be for the approximation to remain accurate, namely nc *

�Wc=T�
1=3, but in practice this corresponds to a few units

and is a much weaker restriction compared to the one used
in the ZA.

For numerical illustration, and to understand for which
systems deviation from the ZA can be important, consider
the standard three-dimensional nucleation with interface-
limited kinetics

W�n� � Wc�3�n=nc�
2=3 � 2�n=nc��; ��n� / n2=3:

(12)

The value of � in this case is nc�Wc=3T��1=2. Formally,Wc
and nc can be treated as independent parameters, but in a
real system both are determined by the supersaturation.
One can define a dimensionless interfacial energy � �
�16�=3�1=3v2=3�=T, where v is the molecular volume of
the new phase and � is the interfacial tension, and a
dimensionless supersaturation s � ��1 ��2�=T with
�1;2 being the chemical potentials of the metastable and
stable phases, respectively. Then, one has Wc=T � �3=s2

and nc � 2�3=s3 with � being near-constant for a given
material (e.g., � is about 4 for water and 24 for mercury at
room temperature, and values can be larger at small T, as in
solid-to-solid transformations).

With increasing s both the barrier and the critical size
decrease, but nc decreases faster leading to stronger dis-
creteness effects (smaller �� s�2). Limitations come
from the fact that nc at least must remain larger than 1
and the reduced barrier should exceed several units to
ensure a sufficient lifetime of a metastable state. A large
� is required in order to get into the discrete regime.
Otherwise, there will be no oscillatory behavior in the ratio
J=JZA and a small deviation from unity mostly can be
accounted for within the continuous approximation (which
is of less interest in the present context). A typical situation
with large � is shown in Fig. 1 where the aforementioned
ratio exhibits noticeable oscillations. Note the accuracy of
the analytical expression even if the deviation from the ZA
is strong.

From an analytical standpoint the value of the obtained
result is that it follows directly from the exact sum (3),
bypassing the issue of a continuous approximation of the
original Eq. (1) [17–19] and allowing one to account for
strong discreteness effects which such approximations are
unable to reproduce to a full extent. In contrast to conven-
tional wisdom when the asymptotic nature of the nuclea-
tion problem is associated with the possibility to replace
Eq. (1) with some Fokker-Planck equation(s), it appears
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that the condition Wc=T � 1 is less restrictive and allows
one to examine much smaller values of the critical cluster
number nc.

In summary, a novel asymptotic nucleation regime,
which takes place for a high barrier but moderate values
of the critical size, has been identified. The flux, Eq. (8),
can be obtained analytically within the framework of the
classical nucleation theory. The result is valid in a much
broader domain of supersaturations than the standard
Zeldovich approximation (ZA) and has the latter as a limit
when the supersaturation is small. Similarly to the ZA the
result depends only of the properties of near-critical nuclei
and thus has the same degree of universality. However, the
dependences on the barrier and on the critical size are not
separated anymore but are combined into a two-parametric
special function #3�z; q�. Oscillatory behavior of the pre-
exponential of the flux has certain similarities with the one
observed in a strongly nonclassical nucleation in a lattice
gas driven by Glauber-type dynamics [13,20] where nu-
cleation can be described by multidimensional generaliza-
tions of the Becker-Döring equations in the space of cluster
configurations. Technically different approaches to nuclea-
tion in lattice systems, as well as different dynamics and
lattice symmetries, were considered in Refs. [21,22], and
an analogous structure of the preexponential is expected. In
this context, one notes the power of the classical approach
[3] in capturing at least some of the more general nuclea-
tion features, in the present case the nontrivial sensitivity of
kinetics to the discrete nature of the number of monomers
in a critical nucleus. In practical applications the obtained
expression is expected to be of value for materials with
high dimensionless interfacial energy when the critical size
is small and the ZA can be inaccurate.
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