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Atomic Scale Origin of Crack Resistance in Brittle Fracture
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We investigate the physical meaning of the intrinsic crack resistance in the Griffith theory of brittle
fracture by means of atomic-scale simulations. By taking cubic SiC as a typical brittle material, we show
that the widely accepted identification of intrinsic crack resistance with the free surface energy under-
estimates the energy-release rate. The strain dependence of the Young modulus and surface energy, as well
as allowance for lattice trapping, improve the estimate of the crack resistance. In the smallest scale limit,
crack resistance can be fitted by an empirical elastoplastic model.
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A basic result of fracture mechanics for brittle materials
is represented by the Griffith theory for crack stability [1],
which describes a planar crack in a homogeneous medium
as a reversible thermodynamic system. The total energy of
the system is written as the sum of a mechanical contribu-
tion due to the strain energy absorbed from the external
work, and a crack resistance term, originating from the
material resistance to create new free surface by breaking
bonds. A crack of given length is stable at the critical value
of load for which the total energy of the system is sta-
tionary. Once the load exceeds such a critical value, the
energy-release rate for unit area of crack advance G be-
comes larger than the intrinsic crack resistance and there-
fore the crack propagates. In a perfect homogeneous solid
in vacuum the crack resistance energy per unit surface is, in
fact, identified with the (unrelaxed) free surface energy 7y
[2,3]. The Griffith criterion was extensively verified in
glass specimens containing cracks of controlled length
and it is still adopted to estimate the surface energy of a
brittle material [2,4].

At a more fundamental level it is known that, even for a
perfectly brittle material, some modification of the Griffith
theory has to be taken into account in order to describe the
atomistic nature of the interactions [3]. As already indi-
cated by Griffith in his original study, this turns out to be
particularly relevant for microcracks of very short length.
First of all, it was shown by means of a simple lattice
model of brittle crack propagation in a two-dimensional
crystal [5] that the discreteness of the lattice may increase
the effective crack-tip force necessary to break a bond
across the surface, therefore causing crack arrest for
some range of loads above the theoretical Griffith value.
Such a phenomenon was termed lattice trapping and was
subsequently studied in a number of atomic-scale simula-
tions [6—9]. However, the results are sometimes difficult to
generalize. Second, the effective crack resistance could
include terms beyond the mere energy of the unrelaxed
cleavage surface. Formally, G is defined [10] as G = 27,
where the material parameter vy, is the integral of the stress
versus separation curve for the atomic planes undergoing
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separation during the fracture process. While 7y, may
ideally coincide with the energy 7y of the cleavage surface,
it could include also other atomic-level details. Moreover,
the maximum o of such a curve defines the critical
fracture stress, i.e., the value at which a brittle crack starts
propagating. However, the actual maximum stress at the
crack tip could overcome o, before propagation because
of various features, including lattice trapping, nonideal
sharpness of the (finite-size) crack-tip, anharmonic, and
many-body effects in the atomic-level forces. While the
Griffith theory does not depend on o but only on the
integral 7y, other theories tried to also include the role of
the maximum stress at the crack tip [8,11,12].

Atomistic simulations offer the opportunity to study the
fundamental issues underlying the Griffith theory in ideally
pure, perfect single-crystal materials. In this Letter we
present an atomic-scale investigation of brittle fracture
addressing the relationship among the critical load to frac-
ture, intrinsic crack resistance, and surface energy, in the
framework of the Griffith theory. We find that the identi-
fication of crack resistance with the surface energy pro-
vides only a lower limit to the energy-release rate. By
including the strain dependence of the Young modulus
and surface energy, a large part of the discrepancy between
the atomistic results and Griffith theory may be recovered.
Moreover, we set an upper bound for the role of lattice
trapping in increasing the effective crack resistance.
Finally, for the shortest microcracks of length of a few
lattice spacings, we give an empirical fit to an elastoplastic
model, asymptotically merging into the Griffith theory at
longer crack length. We focus our work on cubic silicon
carbide (B-SiC) since it is the prototype of an ideally brittle
material up to extreme values of strain, strain rate, and
temperature, and because of its technological relevance as
a structural and nuclear material. The available data [2] for
B-SiC are accurate enough (despite the microstructural
heterogeneities of experimental samples) to suggest that
its intrinsic crack resistance in vacuum is, indeed, higher
than the theoretical, ideal-crystal surface energy.
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We carried out damped-dynamics atomistic simulations
with the aim of reproducing the macroscopic conditions of
a quasistatic (or adiabatic) crack loading process at 7 =
0 K. External loading was represented in terms of surface
forces, or tractions [13], applied at the nonperiodic borders
of the simulation cell (see below). Atomic positions were
relaxed according to the local values of the forces and by
constantly damping velocities to zero, until the maximum
force was less than 0.0001 eV/A.

Atomic forces were calculated according to the Tersoff
model [14]. Such an empirical interatomic potential has
already been applied [15] to the study of mechanical
properties in B-SiC and it is able to describe the experi-
mentally observed brittle behavior [16] of cubic B-SiC.
Furthermore, the same force model has been applied to
investigate the static mechanical response of nanostruc-
tured B-SiC to uniaxial tensile loading [17].

The simulation cell is represented schematically in
Fig. 1. The lowest unrelaxed surface energy of 3-SiC is
that of the (111) shuffle plane [16], having the lowest
density of dangling bonds. As a consequence, (111)-plane
cracks are the most likely to form in experimental con-
ditions, and we therefore focused our theoretical analysis
on such a crack arrangement. The simulation cell has the x,
y, and z Cartesian axes parallel to the [112], [110], and
[111] crystallographic directions, respectively. Therefore,
the crack front lies parallel to the [112] direction; i.e., the
crack arrangement is (111)[112].

We took special care in order to avoid finite-size effects.
The size of the simulation cell was chosen so as to get in
any case a ratio of L/c > 10 (see Fig. 1) as indicated by
previous molecular dynamics studies [7]. The resulting
number of atoms ranged from 30 000 up to ~250 000.

The external load was applied according to the constant
traction method [13]. To this end, the three-dimensional
periodic simulation box is initially deformed along the z
direction according to a given strain value € = €[;1115 .,
while keeping €,, = 0 and €,, = 0 (plane-strain condi-
tion). Periodicity is then removed along z and surface
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FIG. 1. Geometry and orientation of the simulation cell. In the
present simulations 22 nm < L < 88 nm. The shaded area rep-
resents the crack position.

tractions are calculated, in order to preserve the state of
deformation. At this stage a microcrack of given length is
introduced by mathematically cutting the interatomic
bonds across a segment of a central (111) plane. The
interbond distance along [112]is ¢, = 2.644 A. The actual
minimum-energy atomistic configuration is eventually ob-
tained by the above specified damped-dynamics procedure.
After crack opening, interatomic forces are fully restored
and the microcrack reaches its equilibrium shape following
stress relaxation.

When applying tensile loads, one can reach a strain state
such that the Si-C bond length at the crack tip lies in the
range of values for which the cutoff function of the Tersoff
potential operates. Notably, the Tersoff potential was not
originally intended for being used under such extreme
deformations. To overcome artifacts due to the cutoff,
Tang et al. [15] shifted the cutoff distance to larger values
as a function of the applied deformation. At variance with
that work, in the present study the system is deformed
nonhomogeneously since the crack acts as a stress concen-
trator [17]. Therefore, we set a local criterion to adjust the
cutoff distance, instead of globally changing the cutoff for
all the atoms. In practice, a list of the original neighbors is
kept during microcrack relaxation. As far as the neighbor
distance is increased, the cutoff around each crack-tip atom
is varied so as to retain the interaction with all the original
neighbors in the list. With such a choice, atoms undergoing
bond breaking can explore the proper Tersoff curve (i.e., no
smoothing function is at work), while all the bulk proper-
ties are unchanged.

The stress-strain curve obtained with such a modifica-
tion of the cutoff agrees with that of Tang et al. [15] and is
represented in Fig. 2, top panel. The slope at vanishing
deformation (dashed line) is related to the Young modulus
E through the following equation: [18]

E (1-v)?
O T T, T o, T E'fenny, (1)

where v is the Poisson coefficient, E' = E/(1 — v?). At
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FIG. 2. Top panel: stress-strain curve for SiC (present Tersoff
model); bottom panel: unrelaxed surface energy dependence on
strain.
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deformations 0.02 < €[;;;7 < 0.12 the Poisson coefficient
is in the range 0.047 <w» <0.07 and 1.0024 < f <
1.0057. Consequently we can assume f = 1 with 0.5%
tolerance. In our simulations it is possible to calculate
E’ by the numerical derivative of the stress at zero strain:
E' = E/(l - V2) = da’[lll]/de[lll]- We obtain E' =
567 = 1.2 GPa in good agreement with previous results
[19]. Finally, the value of the unrelaxed (111) surface
energy obtained with the present Tersoff model is y =
0.158 eV A2 at vanishing deformation. It is important to
stress that the surface energy to use in the Griffith theory is
the unrelaxed one, since the newly formed crack surfaces
are infinitesimal portions of cleavage surfaces from the
bulk crystal.

According to Griffith fracture theory, the critical stress
a’? for a sharp planar crack of length 2c¢ is a function of the

Young modulus E and of the crack resistance 7,:

by E
o0 = B, )
ac

As said above, vy, is usually identified with the free surface
energy vy of the cleavage surface.

A series of atomistic simulations was performed with
microcracks of length 2¢y < 2¢ < 50c,. Based on the
Griffith formula the critical load increases with decreasing
microcrack length. For the Griffith theory to be valid, the
limits of applicability of linear elasticity must be respected.
Such a requirement implicitly defines the minimum length
at which a finite-size microcrack can still be considered a
“Griffith crack.”

In Fig. 3 we report the values of critical strain €, as a
function of microcrack length, obtained from our atomistic
simulations (symbols). The full curve represents the criti-
cal strain corresponding to the o/(c) predicted by the
Griffith theory, by using the above defined values at € =
0 condition of E' and 7y for the Tersoff potential. The
corresponding critical value of the atomistic stress at fail-
ure a‘)‘} is obtained either from the value of the average

surface traction which preserves the applied strain or,
equivalently, from the asymptotic value of the atomic-level
virial stress equation.

Consistently with the expected brittle behavior, we
found that at loads above the critical strain the microcrack
extends in a perfectly brittle way, by preserving atomically
smooth (111) cleavage surfaces. Such a result is granted
only by the above described modification to the cutoff
function: with the original Tersoff cutoff we observed
either crack deflection or incipient plasticity, depending
on the loading conditions. On the other hand, no rehealing
of the microcrack edges was ever observed in our simula-
tions at subcritical values of the load; i.e., the microcrack
does not recede back to the perfect crystal. This is due to
the relaxation of the free surface created by the microcrack,
which entails both a slight energy decrease, and a variation
of the optimum bond angles from the perfect tetrahedral
arrangement.
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FIG. 3. Critical strain, € r.asa function of the crack size, 2c¢, in
units of the [112] interbond distance c¢,. Symbols are the data
from atomistic simulations; the continuous line is Griffith’s
theory with constant material parameters and the dashed line
is the modified Griffith’s theory; see text. The horizontal error
bars in the figure are due to the lattice spacing orthogonal to the
crack front, while the vertical error bars are due to the steps
chosen to vary the strain, Ae = 0.001.

Concerning the limits of the Griffith theory, we note that
for microcrack lengths 2¢ < 10¢, the critical strain ex-
ceeds the value 0.05, i.e., the value at which deviations
from linearity start to appear in the Young modulus. As a
consequence, this is the minimum crack length for which
the Griffith theory is applicable in our model of §-SiC.

For microcracks longer than ~10c¢ the calculated criti-
cal strain is systematically higher than the Griffith theory
prediction. It is worth noting that, while atomistic simula-
tions on metallic systems with long-range interatomic
potentials reported a substantial agreement with the
Griffith theory, [7] Bernstein et al. [6] found a similar
discrepancy in silicon. According to that study such a
discrepancy is by definition the lattice trapping R =
a";} / O'J?. ‘We believe, however, that the difference between
atomistic simulations and the Griffith curve deserves fur-
ther investigation before getting to firm conclusions. The
assumptions of the linear elastic fracture mechanics are,
strictly speaking, not correct in the case of a realistic (i.e.,
anharmonic) force model as is the present case. There are,
indeed, at least two possible corrections to the common
interpretation of the crack resistance term in the Griffith
theory: (i) the surface energy y depends on the state of
strain and (ii) the stress-strain curve is not strictly linear
over the range of explored loads; therefore, the Young
modulus E’ is not constant.

As a matter of fact, the nonlinear dependence of the
surface energy y versus strain €[] (see Fig. 2) can also be
computed straightforwardly. Accordingly, both the surface
energy and Young modulus strain dependence can be in-
troduced into the Griffith curve. The result of such a
modified Griffith theory is the curve reported in Fig. 3 as
a dashed line. The agreement between atomistic data and
the modified Griffith theory is now much better, within the
reported error bars. This demonstrates that the common
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FIG. 4. Crack resistance 7y, as a function of the microcrack
length 2¢. Symbols are atomistic simulation data; the horizontal
continuous line is the original Griffith theory; the long-dashed
line is the modified Griffith theory, with strain-dependent surface
energy and Young modulus; the continuous line is the fit to the
DBCS elastoplastic model. The horizontal short-dashed line at
vs/v = 1.25 represents the asymptotic value for the infinite-
crack intrinsic resistance estimated from atomistic simulations.

identification of the crack resistance <y, with the free
energy 7y of the cleavage surface provides only a lower
bound to the energy-release rate G.

To quantify more accurately the sources of the observed
discrepancy, in Fig. 4 we represent our results in a new
form. The quantity y, = (0'?3)277c/2E’ is the intrinsic
crack resistance obtained from atomistic simulations. In
the original form of Griffith’s theory y, does not depend on
the crack length and is therefore a constant: a horizontal
alignment of the data is expected if Griffith’s theory pre-
diction is correct.

We exclude for the moment the first three simulation
points from the discussion, since they belong to extremely
small microcracks for which the Griffith theory does not
apply. In Fig. 4 it can be seen that, although the long-
dashed curve corresponding to the modified Griffith theory
grossly agrees with the atomistic data, some systematic
discrepancy arises asymptotically for macroscopically
long cracks. This gives a 25% departure from the classic
Griffith theory (horizontal full line at y, = ). However, a
substantial part of this discrepancy is due to the lack of
strain dependence of the materials parameters. In the
modified Griffith theory, these strain dependences are in-
cluded and provide a y, = 1.10y as the asymptotic limit.
The remaining discrepancy may be attributed to a possible
lattice trapping (proportional to the square root of the
discrepancy), the value R = 1.08 representing an upper
bound for such an effect which, however, includes also
the statistical error bars of the simulation results.

For very short microcracks, of length of a few c,, the
critical stress o-j‘} is so high that it becomes difficult to
discriminate between bond breaking and incipient plastic-
ity. A description of this regime can be attempted by a fit to
an empirical elastoplastic law, such as the Dugdale-Bilby-
Cottrell-Swinden model (DBCS) [12]. In this case, the

model fracture stress can be deduced by inverting the
expression for the (unknown) crack-tip displacement 6, as:

20 A 1
O'fD = TMCOS_I[GXIJ(_mE)} (3)
The lumped length parameter A should be equal to A =
ub/ay, with w the shear elastic modulus, and o, the
ideal cohesive strength, in the original DBCS model.

The best fit of the DBCS model to the atomistic data is
represented in Fig. 4 by a continuous curve, merging with
the atomistically corrected Griffith theory result at longer
crack lengths. It is worth noting that, with the fitted values
of the parameters, o), = 53 GPa and A = 2.3¢,, we ob-
tain an estimate of the crack-tip opening & ~ 0.7¢. This
means that, for an ideally brittle material, the extent of a
“plastic” zone in the incipient microcrack (a “flaw”) is,
indeed, vanishingly small. However, this analysis also
underscores the presence of competing instability modes,
e.g., originating from a shear response, for microcracks of
atomic-size length under very high stress.
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