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Enhanced Plasma Transport Due To Neutral Depletion
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The dynamics of plasma and neutral gas in pressure balance are solved self-consistently to reveal the
impact of neutral depletion. Analytical relations that determine the electron temperature, the rate of
ionization, and the plasma density are derived. Because of the inherent coupling of ionization and
transport, an increase of the energy invested in ionization can nonlinearly enhance the transport process.
We show that such an enhancement of the plasma transport due to neutral depletion can result in an
unexpected decrease of the plasma density when power is increased, despite the increase of the flux of
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generated plasma.
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Plasmas in a pressure balance with a neutral gas are
common in laboratory [1] and space [2]. Low-temperature
laboratory plasmas in a pressure balance with a neutral gas
are usually weakly ionized so that neutral-gas density is
mostly unaffected by ionization. Useful analytical relations
have been found for such plasmas within various diffusion
models [3-6]. In the weakly ionized plasmas analyzed in
the models particle balance is decoupled from energy
balance and the electron temperature is found to be related
to a single similarity variable, the product of the neutral-
gas pressure and the plasma spatial extent [4]. The plasma
density is determined by power balance and increases
monotonically with deposited energy, as does plasma
flux. Many plasmas in pressure balance, however, are not
weakly ionized. In space plasmas in pressure balance with
neutral gas, neutral depletion is often substantial. With the
recent use of high power and low pressure gas, a signifi-
cant neutral depletion became a major concern in low-
temperature laboratory plasmas as well [7-9]. Never-
theless, analytical relations between the plasma and neutral
parameters in the depleted-neutrals case, which could be of
crucial importance in the study of laboratory and space
plasmas, are not available. The difficulties in the analysis
stem from the fact that when the neutral pressure is not
uniform, the above-mentioned similarity variable is no
longer well defined, and even an average value of that
parameter is not predetermined anymore but rather varies
with power. Moreover, particle balance and power balance
become coupled and so do ionization and transport.

In this Letter we uncover the impact of neutral depletion
on plasmas in pressure balance with neutral gas by solving
self-consistently the plasma and neutral dynamics and
deriving analytical relations. Since the results are of a
general nature, not limited to weakly ionized plasmas,
they are relevant to a variety of plasmas, ranging from
low-temperature plasmas to interstellar gas [2]. We dis-
cover that the total number of neutrals replaces the above-
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mentioned similarity variable of the weakly ionized case as
the parameter that determines the electron temperature.
The classical linear diffusion equation [3] is replaced by
a nonlinear diffusion equation for which we find an ana-
lytical solution in the form of Kepler’s equation. It is shown
that even a relatively small plasma density (1% of the
neutral density) can alter the neutral density so that the
plasma steady state is dramatically modified. Since the
density of the plasma is determined by competition be-
tween ionization and decay through transport, an increase
of the energy invested in ionization that increases the flux
of generated plasma is expected to also increase the plasma
density. One result of the inherent coupling of ionization
and transport, however, is that a high enough ionization can
nonlinearly enhance the transport process. We show that
such an enhancement of the plasma transport due to neutral
depletion can result in an unexpected decrease of the
plasma density when power is increased, despite the in-
crease of the flux of generated plasma. The possible ex-
istence of similar counterintuitive relations should be taken
into account when measurements of plasma density are
used to learn about laboratory or space plasma dynamics.

Let us assume a partially-ionized plasma slab the spa-
tial extent of which is 2a. The governing equations of
the plasma and neutral dynamics are the continuity and
momentum-balance equations. The continuity equations
are

AL G (1)
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where I'; and I'y are the plasma and gas fluxes, n and N are
the plasma and the neutral-gas densities, and S is the
ionization rate. The plasma is assumed unmagnetized
along the x direction, and we restrict the analysis to the
collisional regime. Therefore, both plasma and neutrals are
pushed by gradients of pressure and exert on each other a
drag force due to mutual collisions:
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Here T is the electron temperature (assumed much larger
than the ion temperature), 7, is the gas temperature,
F (—F) is the drag on the ions (neutrals) due to collisions
with neutrals (ions) and points inward (outward), resulting
in neutral pumping [7], balanced by the gradient of the
plasma (neutral) pressure that exerts an outward (inward)
force. Adding the two Egs. (2), we obtain an equation that
expresses a pressure balance between plasma and neutrals.
Since n(x = a) = 0, we express that pressure balance as

NT, + nT = N, T,,, 3

where N, and T, ,, are the neutral density and temperature
at x = a.
We first assume that the ion velocity v; is much smaller

than the neutral thermal velocity vy = /8T, /(7wm) (m is
the neutral or ion mass). The drag force takes the form [6]

F = —imo;ynNvrv,, @)

where o;y is the ion-neutral collision cross section. The
opposite regime, in which v; >> vy, is analyzed later. We
also assume that v; is larger than the neutral drift velocity.

Combining Eqgs. (1) and (2) with the explicit forms for
the neutral density (3) and for the force (4), we obtain the
equation for the normalized plasma pressure p; =
nT/(NyT,,) as

9 1 ap;
6§|:(1 —pi) 9€

where § = [{[T,,,/T,(x')](dx'/a) (¢ = x/a if neutral tem-
perature is uniform) and «; = 4mo;yvyBa*N3,/(3T). In
the case that p; < 1, Eq. (5) is reduced to the familiar
linear diffusion equation [3]. Equation (5) is first integrated
to give ap;/9& = —ay*(1 — p)[pi(0)* — p?1"/2, an ex-
pression that allows us to express the total number of
neutrals (per unit area), Ny = f § dxN, as
1/2
) NG

N :Nwa fl dp, :z< 3T
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where p, = p;/pi(0). Relation (6) replaces the classical
condition derived for the weakly ionized case [3,4]. It
relates the total number of neutrals Ny to the electron
temperature 7. The parameter Ny is reduced to the simi-
larity variable N,,a in the weakly ionized case of uniform
gas density [4].

We find additional relations by integrating Eq. (5) to ob-
tain a2 &= [1 dpl,/{[1 - p,0)p},](1— p)"/?}. Impos-
ing the boundary condition p,=0 at &= ¢y =
&(x = a) provides us with the relation alL/wa = [4dp./
{[1 = p;(0)p,1(1 — p2)!/2}. This equation can actually be
integrated. By transforming it into ai/ 2= f g/ 2do'/

} tay(l=p)pi=0, (5

(1 — sinf, sinf’), where sinfy = p;(0) and sinf = p,,
we obtain the relation (sind — sinfly)/(cosf cosb) =

cot[cos(ﬁo)alL/ 2£]. Imposing the above boundary condi-
tion, this time in the form 6 = 0 at ¢ = &y, we obtain
the relation

0, = a2 &y cosfy — g (7
Curiously, this algebraic plasma balance equation can be
cast in the form of Kepler’s equation [10]. Such an equa-
tion was recently used also to describe the dynamics of a
quantum kicked rotor [11].
Using Eq. (7) we obtain the profile of the plasma density
in the form

e =l (w D)L @

cosf cosb 5

Equations (7) and (8) are generalizations of the weakly
ionized uniform neutral-density case to include neutral
depletion. When neutral depletion is small, when 6, <
/2 and &y, = 1, these relations yield a; = (7/2)%, 6 =
(7/2)(1 = £), and p,, = cos(7/2)&; the specified value of
a; then determines the electron temperature, recovering
the uniform neutral-density case.

Although neutral-gas heating could be significant [12],
we restrict ourselves for simplicity to the uniform gas
temperature T, = T,,, case, so that & = 1. We turn to
an analysis of the effect of the power on the plasma steady
state. The deposited power per unit area P equals the flux
density of plasma particles I'; multiplied by the energy
deposited in each such particle e, P = g;';(€ = 1) [1].
From Egs. (2) and (4) we obtain an expression for I'; and,
by employing its value at the boundary, we obtain

P = 8T< 3B

40'1'NUT

1/2
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Here v, = /T /m. This last relation is of the same form as
when the neutral density is uniform, although the neutral
depletion may affect the values of the plasma parameters.

Equations (6), (7), and (9) determine the relations be-
tween the parameters of the neutral-depleted steady state,
while Eq. (8) determines the spatial profile of the plasma
density. These relations can be applied to a variety of
plasmas. In space, for example, they could be used for
the study of the relations between different phases in
pressure equilibrium, such as the cold dense clouds em-
bedded in the hot medium in the interstellar gas [13].
Similarly, they could be applied to determine the ratio
between plasma and neutral pressures inside the ionized
layer at the boundary of a molecular cloud [14], or in young
stellar object jets [15]. Such applications to space plasmas
may require modification of the model to account for the
effects of gravity, magnetic field, or photoionization. As a
concrete example, we choose laboratory neutral-depleted
low-temperature plasmas.
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We address two cases: the first case is a discharge in
which Ny is specified and does not vary with power. This
happens when the total amount of gas in a laboratory
chamber is fixed. Since even when neutrals are depleted
n is usually much smaller than NV, this case corresponds to a
fixed total number of gas particles, neutral plus ionized. In
the second case the neutral density at the plasma boundary
Ny is fixed while the power is increased. This happens, for
example, when the edge of a discharge tube opens into a
larger gas tube of a specified gas pressure, as is often the
case in laboratory plasmas.

The numerical examples are for argon and the values of
the atomic quantities are taken from the literature [1,6].
Also, a = 5 cm, the gas is at room temperature, and its
pressure prior to the discharge is 10 mtorr. The calculated
plasma and neutral-density profiles in both cases are shown
in Fig. 1 for two power levels, low and high. When the
power is low, the neutral density almost does not vary,
while the plasma density has the familiar cos(77/2)¢ form.
In both cases, however, when the power is high, the neutral
and plasma densities are uniform across most of the dis-
charge volume and sharply drop to zero (plasma) or sharply
peak to a high density (neutrals) near the boundary, similar
to what was found in measurements [8]. Note that in the
first case the fixed total number of neutrals results in an
increase of the total pressure with power. The increase of
the total pressure, NyT,, is expressed at the discharge
center by a large plasma pressure and near the wall by an
increased neutral pressure.

The dependencies of the discharge parameters on power
are shown in Fig. 2 (fixed N7) and Fig. 3 (fixed Ny,). Since,
according to Eq. (6), the electron temperature is deter-
mined by the total number of gas particles, the electron
temperature in the first case is fixed even if the deposited

0
g

FIG. 1. Plasma and neutral-density profiles, fixed total neu-
tral number—top (P = 33 kW/m? and 509 kW/m?); fixed
neutral density at the boundary—bottom (P = 3 kW/m? and
121 kW /m?).

power is increased. While the constant electron tempera-
ture and the increase of the maximal density 7;(0) and of
the flux density I'; with power, are similar to the depen-
dencies on power in the absence of neutral depletion, the
flat density profile and the above-mentioned total pressure
increase are clearly different.

The effect of neutral depletion is more pronounced in the
second case. The specified constant neutral density at the
plasma boundary Ny, means a constant total pressure
NyT,. As is shown in Fig. 3, the increase of power for a
fixed total pressure is followed by an increase of plasma
pressure at the expense of the neutral pressure. The de-
crease of Ny (the total number of gas particles) is followed
by an increase of the electron temperature 7. Since €7 is a
decreasing function of 7, the increase of the electron
temperature 7 with power results in an increase of the
plasma flux I'; with power that is faster than linear.
Interestingly, despite the fast increase of plasma produc-
tion with power, the plasma density does not increase faster
when the power is increased. Moreover, the behavior is
nonmonotonic, and above a certain power the density
decreases with the power increase. As is shown in the
figure, this is true for both n;(0) and the total number of
plasma particles, [§ dxn = (T,/T)(N,,a — Nr) [following
Egs. (3) and (6)]. The decrease of plasma density with
power exhibited in Fig. 3 is a result of deconfinement of the
plasma by neutral depletion. The drag of the neutrals on the
ions decreases when the neutrals are depleted. Thus, even
though more ions are produced, they escape the volume
faster, and therefore their density is lower. Often plasma
dynamics is concluded from measurements of various
plasma parameters. The possible existence of counterintui-
tive relations, demonstrated in the example, should be
taken into account in interpreting these measurements.

For completion we briefly analyze the regime v; > vy
in which the collision term is nonlinear in v;, a regime

.
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FIG. 2. Fixed total number of neutrals: Ny, (102 m~3), T(eV),
n;(0)(10" m™3), T';(5 X 10*! m™2s71),
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FIG. 3. Fixed neutral density at the boundary: Ny, (1020 m™3),
T(eV), T;(5X10*" m™2s7), n;(0)(5%X 107 m™3), np2 X
10" m~2).

explored by Godyak [5]. The force exerted on the ions by
the neutrals is then

F= —ma',-Nan%. (10)

Equivalent to the previous analysis, the governing equation
becomes 9/dxy/—(n/N)a/dx(nT) = \/mo;yBNn. When
pressure balance, Eq. (3), is employed, the equation in
dimensionless form becomes

J pi  9p;

a_g 1= p) 8—§ —ay (1 = p)p; =0, (11)

where ay; = By/mo;y(aNy)?/T. This equation is first
integrated to give —[p;/(1 — p.)]ap;/0é = a2 [p3(0) —
p3T3, which is used to express the total number of neu-
trals as (NT/aNW)alz\,/L3 = [ p,(1 = p3)~*3dp, = 2m/
(3+/3). The last relation provides us with a relation between
the total number of neutrals per unit area and the electron
temperature,

NT<M>1/3 _ 27 (12)

T 33
Again, the total number of neutrals is the parameter that
determines the electron temperature.
We further integrate to obtain afv/jg =/ 11,” dplpl[1—
p:(0)p. 17 (1 — p)~2/3 and, integrating the equation un-
til the plasma boundary, we obtain that

22y = fl Padpy, '
o [1 = p,0)p,](1 = p3)*3

When neutrals are not depleted p;(0) << 1, and we obtain

13)

the known result, ay; = [27/(3+/3)/? [5,6] [which is
identical to the relation (12) in which we substitute Ny =
Nyal. Similar to the previous regime [Eq. (9)], we ob-
tain from power balance that P = e(Bv?/oyv3)'/3 X
(8/7)/2vn;(0). Thus, the plasma behavior when the col-
lision term is nonlinear is qualitatively similar to the be-
havior when the collision term is linear (analyzed in detail
above).

In this Letter we have solved self-consistently the equa-
tions that describe the steady state of a plasma and a neutral
gas in pressure balance as they often are in laboratory and
in space. Relations that determine the electron tempera-
ture, the rate of ionization, and the plasma density were
found analytically. The analytical results enabled us to
examine the rich plasma behavior due to the neutral de-
pletion. In particular, an unexpected nonmonotonic depen-
dence of the plasma density on power was demonstrated.
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