
PRL 95, 115001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 SEPTEMBER 2005
Quantumlike Dynamics of Classical Particles in Ponderomotive Potentials
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The average dynamics of a classical particle under the action of a high-frequency radiation resembles
quantum particle motion in a conservative field with an effective de Broglie wavelength � equal to the
particle average displacement on the oscillation period. In a quasiclassical field, with a spatial scale large
compared to �, the guiding-center motion is adiabatic. Otherwise, a particle exhibits quantized eigenstates
in ponderomotive potential wells, tunnels through ‘‘classically forbidden’’ regions, and experiences
stochastic reflection from attractive potentials.
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A multiscale approach to describing particles driven by
intense electromagnetic radiation relies on separating fast
oscillatory motion of the particle in the ac field from its
slow translational motion. Assume that the parameters of
the oscillations vary along the particle trajectory s�t� on a
sufficiently large scale L, that is,

� � maxf�=L; d�=dsg � 1; (1)

where � is the particle average displacement on the oscil-
lation period. The translational motion is then conveniently
described in terms of the so-called ‘‘guiding-center’’ vari-
ables, for which the explicit time (or phase) dependence is
removed from the motion equations to any power in � [1].
This technique is widely used in theoretical and computa-
tional plasma physics to study particle dynamics in mag-
netic, rf, and laser fields; what is in practice often missed
though is the intrinsically limited accuracy of the guiding-
center approximation. The transformation to the new co-
ordinates is an asymptotic procedure with an exponentially
small error in �. The true drift coordinates are then in
principle definable only with limited accuracy, thus the
dynamics of the guiding center as a quasiparticle may
not follow the laws of classical mechanics. Strikingly,
what this dynamics resembles instead is the motion of a
quantum object.

For the particle motion in a nonuniform magnetic field, a
similar analogy was previously drawn by Varma, as re-
viewed in Ref. [2]. However, the explanation of the ‘‘mac-
roquantum’’ effects in terms of the actual wave functions
remains controversial [3]. In contrast to Varma’s quantum
approach, we show that purely classical particles can ex-
hibit quantumlike effects. In particular, we show that an ac-
driven particle exhibits quantized eigenstates in a pondero-
motive potential well, tunnels through ‘‘classically forbid-
den’’ regions, and experiences reflection from attractive
potentials. To describe these effects quantitatively, we
employ the results of our previous research [4]; yet the
conceptual results offered here follow from very elemen-
tary points.
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The traditional understanding of the particle interaction
with a wave barrier can be explained as follows [5,6].
Under the condition (1), the particle dipole moment p
induced by the ac field follows an ‘‘adiabatic’’ equation
of state. It means that p can be approximately expressed as
a local function of the particle location r, which, in the
simplest case, is proportional to the amplitude of the field:
p � ��!; r�E0�r�. (Here � is the polarizability tensor,! is
the field frequency, and the conventional complex notation
is implied.) The average force on the particle can be
approximately described in terms of the ponderomotive,
or Miller potential �, equal to the average energy of the
dipole-field interaction:

� � �
1

4
�E�0 � � �E0�: (2)

Unlike for a true potential, the conservative property of
the Miller force is only approximate. Consider an ele-
mentary particle with charge e and mass m exhibiting
one-dimensional (1-D) oscillations governed by m�z 	
eE�z� sin!t. (In this case � � e2E2=4m!2, assuming
eE=m!2L� 1.) Suppose that at t 	 0 the particle is
placed at a local minimum of ��z� (say, z 	 0) with
velocity v. If E � 1

2mv
2 <�max ���0�, the particle will

exhibit bounce oscillations, periodic in the limit �! 0. At
finite � though, when the adiabatic approximation is vio-
lated, the particle, in fact, gains or loses energy each time it
bounces off a ponderomotive wall. The bounce motion
remains strictly periodic only for a countable set of reso-
nant orbits, for which the amount of energy gained by the
particle per bounce period equals the energy transferred
back to the field [7]. Unlike other trajectories, the periodic
orbits can be assigned definite energies [En � E�z 	 0; t 	
q�n�; q is an integer, �n is the nth bounce period], and,
therefore, can be viewed as the stationary energy levels
(eigenstates) of the particle in the ponderomotive potential,
similar to those exhibited by a quantum particle in a
conservative field.

Remarkably, this analogy predicts observable physical
effects if an ensemble of particles is contemplated. As �
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increases, stochastic oscillations may develop, resulting in
the particles escaping from the interaction region. Regular
dynamics is preserved in the first place near the periodic
phase-space trajectories (corresponding to elliptic points of
Poincaré mapping [1]), as shown in Fig. 1. This selective
confinement provides that, like in a quantum well, only
particles with E � En remain inside the interaction region
at t! 1 for sufficiently large �.

Discrete energy levels in a Miller potential have a simi-
lar nature to those in a quantum well. In fact, the average
ponderomotive force applies not to the particle itself, but to
its guiding center, which can be assigned a phase, � 	 !t,
like a quantum object. The quantization rule in a pondero-
motive potential (i.e., the periodicity requirement for the
bounce motion) can be written in terms of this phase
increment over the bounce period: ��n 	 2�n, where n
is an integer. By definition, large n corresponds to the
adiabatic (‘‘quasiclassical’’) domain, for which � �H
dz= �v can be expressed in terms of the guiding-center

velocity �v. Since � 	 2� �v=!, the quantization condition
at n
 1 then coincides with the Bohr-Sommerfeld rule

I
kdz � 2�n; (3)

with the ‘‘uncertainty’’ of the guiding-center location � 	
2�=k serving as the effective de Broglie wavelength.

The Bohr-Sommerfeld eigenspectra (and quantumlike
effects in general) are also inherent to other types of
ponderomotive barriers. Consider an ac field of the form
Eac 	 x0E�z� sin!t applied in the presence of a uniform
dc magnetic field B0 	 z0B0, so that the Miller potential is
given by � 	 e2E2=4m�!2 ��2�, where � 	 eB0=mc is
the corresponding gyrofrequency [5,8]. In this case, it is the
beat period �b 	 2�=j�!j (where �! 	 !��) that
determines the adiabaticity parameter (1). On average
over the ac period, the Larmor period, and the beat period
FIG. 1. Poincaré mapping (fragment) for a particle exhibiting
1D oscillations in the field E�z; t� 	 �E0sinh2�z=L� sin!t with
�̂ � e �E0=m!2L 	 2: E (a.u.) and � 	 !t are taken at particle
crossing z 	 0 with v > 0. Stable oscillations (continuous
curves) are observed near resonant orbits (one in the center
and five on the sides); chaos is developed at the periphery. At
larger �̂, only particles near the central orbit are confined.
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simultaneously, the particle exhibits conservative motion if
� � vz�b is small compared to the spatial scale L of E�z�.
Two adiabatic invariants are conserved in this case [8–10].
Those are the magnetic moment of free Larmor rotation
�	m�v?�v��2=2B0 and the quasienergy H 	 1

2mv
2
z�

��z����B0�Bres�, where v is the particle velocity; v� is
the velocity of the ac-induced particle oscillations trans-
verse to B0; Bres 	 mc!=e is the magnetic field strength,
at which the particle would be in exact cyclotron resonance
with the ac field.

At adiabatic interaction,�Bres is constant (and so is�B0

at B0 	 const) and hence could be omitted. Remarkably
though, with this term, H is conserved also for � * 1 at
near-resonant drive (� � j�!=�j�1 
 1), if v=!L� 1
[11]. An interesting type of a wave barrier is produced
then, as explored both theoretically [9,12] and experimen-
tally [10]. Averaging over the ac and Larmor periods, the
particle motion equation takes the form m�z 	 �d�eff=dz
[4], where

�eff 	 ��
�!
2�

mj �  aj
2 (4)

is the effective potential,  	 �vx � ivy�ei�t is the slow
amplitude of the particle transverse velocity in complex
representation,  a � ��eE=2m�!�e�i� is its leading-
order adiabatic counterpart for the induced oscillations,
� 	 �!t is the new phase assigned to the particle guiding
center, and t�z� 	

Rz
0 d~z=vz�~z�. In the limit �! 0, � 	

mj �  aj
2=2B0 is conserved, hence, the second, phase-

dependent term in Eq. (4) produces no effect. The average
dynamics then effectively decouples from the transverse
quiver motion, and the particle ‘‘sees’’ the adiabatic po-
tential �. If the condition (1) is broken though, the �
conservation is violated. The two types of motion then
become strongly interconnected, and essentially phase-
dependent dynamics takes place.

Assume for definiteness that E�z 	 0� 	 0, E�z� 	
E��z�, !<�, and consider a subclass of oscillations
with v?�z 	 0� 	 0. A particle starting with vz 	 v0 at
z 	 0 will be decelerated by the ac field, come to a stop at
z�ts� 	 A, and be reflected. Since the particle motion may
be phase dependent, the trajectory after the reflection gen-
erally will not be symmetric to that before the reflection.
However, the symmetry does exist for some v0. Having
such a case requires that �eff
z�t�� is an even function of
t� ts, which is equivalent to

arg �A� � ��A� 	 �n; (5)

where n is an integer. If this condition is satisfied, the
particle is returned to z 	 0 with the longitudinal and
transverse energies precisely matching their initial values
Ek;0 	

1
2mv

2
0, E?;0 	 0. If ��z� is even, the phase-space

trajectory of the particle will form a closed loop on the
plane �z; vz� [Fig. 2(a)]. Like a quantum particle in a
conservative field, a classical particle in a ponderomotive
1-2



FIG. 3. Longitudinal velocity vz vs z for a particle being
trapped and released by a Gaussian attractive ponderomotive
potential in a magnetic field with �̂ 	 6� (Emax 	 0:001, � 	
100, L 	 0:33; E?;0 	 0; same notation as in Fig. 2): vz 	 0:30
(black) and vz 	 0:31 (gray).

FIG. 2. First five stationary eigenstates of a guiding center trapped within a ponderomotive potential formed by an ac field with the
amplitude E�z� 	 qjzj�, � 	 0:6, q 	 10�3: (a) phase plane �z; vz�, (b) energy diagram [dashed, numerical; solid gray, quasiclassical;
solid black, Miller potential ��z�] (E is measured in units mc�=e; z is measured in units c=�; vz is measured in units v̂; E? is
measured in arbitrary units).
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potential can exhibit periodic bounce oscillations only if its
energy satisfies the quantization condition (5). In the adia-
batic limit (n
 1), Eq. (5) yields �!ts � �n, or ��n �
4�n for the change of � over the whole bounce period. The
quasiclassical approximation of Eq. (5) then reads

H
kdz �

4�n, where k 	 2�=�. This equation is again analogous to
the Bohr-Sommerfeld quantization condition, yet now for
even energy levels. As usual, to apply this rule for calcu-
lating the actual eigenspectrum En in a Miller potential,
one can derive vz�z� from the adiabatic motion equations.

As an example, consider E�z� / jzj�, �> 0. [For a
nonanalytic E�z� like this, some of the eigenstates are
unstable. Minor modification of E�z� near z 	 0 restores
the stability without changing most of En.] By approximat-
ing z�t� with a parabola on a half of the bounce period, one
can write the quasiclassical quantization rule in a more
precise form

H
kdz 	 4��n� �=2�. The energy spectrum

is then given by En 	 �n� �=2�2�=�1���Ê��; ��, where Ê
is a constant depending solely on the parameters of the
field. Hence, if �< 1, En increases with n, and the quasi-
classical limit is approached at v0 ! 1. On the other hand,
if �> 1, En decreases with n and becomes quasiclassical
at v0 ! 0. (At � 	 1, which would correspond to a linear
pendulum in the limit �! 0, a degeneracy is observed: in
this case all trajectories are self-similar, and the bounce
period is independent of v0.) The difference between the
two cases is due to the fact that for E�z� / jzj� the scale
L is effectively determined by the amplitude of bounce
oscillations: L 	 A / v1=�

0 . The condition (1) with � �
2�vz=�! then can be put as �v0=v̂�

��1 � 1 [here v̂ 	
�Ê=m�1=2], which is satisfied for v0 
 v̂ if �< 1 and
v0 � v̂ if �> 1 [Fig. 2(b)].

Remarkably, the quantum analogy extends further and
applies also to free (nonconfined) particles: The average
force on the guiding center is proportional to the induced
transverse oscillations of a particle. If a particle incident on
11500
a localized wave barrier is fast enough (� * 1), it will not
have sufficient time to gain quiver energy from the field
and hence will neither experience significant average ac-
celeration. Such a particle will then be able to penetrate
(‘‘tunnel’’) through classically forbidden regions 1

2mv
2
0 <

��z�, just like a quantum particle having a de Broglie
wavelength of the order of the field scale.

Quantumlike properties are also inherent to attractive
barriers, which turn out to be capable of reflecting parti-
cles: The conservation of H yields �Ek 	 ��!=���E?,
which connects the overall changes of Ek and E? at t! 1.
In the adiabatic limit, the net energy change is exponen-
tially small with respect to �. Suppose though that � * 1
and �< 0 (i.e.,!<�). If �E? > 0, a particle loses Ek as
a result of interaction. At some v0 	 vz�t! �1�, the
deceleration can become sufficient to trap a particle in a
potential well: a particle entering the ac field freely can be
bounced back toward the stronger field at the exit (Fig. 3).
1-3



FIG. 4. First three stationary eigenstates of a free particle
traveling through a crystal formed of multiple ponderomotive
barriers (same notation and parameters as in Fig. 3): shaded,
��z�; solid, longitudinal energy Ek vs z.
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The trapping condition can be derived as follows. Slow
particles (v0 � v̂) are accelerated up to vz of the order of
v̂ 	 �j�jmax=m�

1=2. If v̂ itself is large enough, that is, �̂ �
��v̂�=L * 1, nonadiabatic effects have to reveal for all,
even initially slow particles, some of which may then
experience trapping. On the other hand, at �̂ & 1, slow
particles remain adiabatic and hence cannot be trapped.
As for fast particles (v0 
 v̂), in both cases they have
enough energy to overcome the deceleration and avoid
trapping. Thus, if �̂ * 1, at sufficiently small v0 a particle
can be trapped within a ponderomotive potential, but if
�̂ & 1, trapping is impossible regardless of v0.

What is the ‘‘destiny’’ of a ‘‘once trapped’’ particle?
Because of the phase-space conservation requirement, par-
ticles may not stay trapped forever. However, if the number
of bounce oscillations within a potential well is large, the
post-trapping dynamics of a particle correlates little with
its pretrapping dynamics. The direction in which the par-
ticle is released is almost uncorrelated with the initial
velocity (Fig. 3). Hence, the particle can escape toward
the direction opposite to v0, which qualifies as reflection.
The effect disappears under the condition (1), and again
resembles a quantum phenomenon in that a particle can be
reflected by an attractive potential for de Broglie wave-
length of the order of L.

Because of clearly stochastic behavior inside a pondero-
motive well, a particle traveling through a chain of such
potentials would undergo a random walk, as each of the
potentials can scatter a particle back and forth with roughly
equal probability. Hence, a sufficiently long chain of bar-
riers violating the condition (1) acts like a diffusive mirror.
However, among v0, for which stochastic dynamics is
realized, there exists a countable set of regular trajectories,
at which a particle can ‘‘collisionlessly’’ travel through a
‘‘crystal’’ formed by multiple barriers. These trajectories
can then be attributed as stationary eigenstates of a free
particle moving in a ‘‘ponderomotive crystal.’’ Such eigen-
states were found numerically for chains of both attractive
11500
and repulsive potentials (Fig. 4). Similarly to bounce os-
cillations within a potential well, the ground energy level
(n 	 1) of a transmitting particle is located at v0 � v̂.
Higher levels (n > 1) are located at larger energies, and
at n
 1 (corresponding to v0 
 v̂) the particle motion
becomes classical, that is, in this case, only slightly dis-
turbed by the ponderomotive force.

The quantumlike effects described here run counter to
what follows from the traditional adiabatic theory.
Selective confinement, tunneling, and stochastic reflection
cannot be easily captured by asymptotic methods, as those
would not resolve the probabilistic nature of the guiding-
center dynamics. Therefore, in addition to the academic
interest in the demonstration that very general classical
systems can exhibit quantum effects, capturing the effects
we describe here will be a challenge to the existing com-
putational and analytical techniques in plasma kinetic
theory.
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