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Spectral Energy Dynamics in Magnetohydrodynamic Turbulence
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Spectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 10243

collocation points are presented for a statistically isotropic system as well as for a setup with an imposed
strong mean magnetic field. The spectra of residual energy, ER

k � jE
M
k � E

K
k j, and total energy, Ek �

EK
k � E

M
k , are observed to scale self-similarly in the inertial range as ER

k � k
�7=3, Ek � k�5=3 (isotropic

case) and ER
k?
� k�2

? , Ek? � k
�3=2
? (anisotropic case, perpendicular to the mean field direction). A model

of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution
equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings. The
assumed interplay of turbulent dynamo and Alfvén effect yields ER

k � kE
2
k, which is confirmed by the

simulations.
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The nonlinear behavior of turbulent plasmas gives rise to
a variety of dynamical effects such as self-organization of
magnetic confinement configurations in laboratory experi-
ments [1], generation of stellar magnetic fields [2], or
structure formation in the interstellar medium [3]. The
understanding of these phenomena is incomplete as the
same is true for many inherent properties of the underlying
turbulence.

Large-scale low-frequency plasma turbulence is treated
in the magnetohydrodynamic (MHD) approximation de-
scribing the medium as a viscous and electrically resistive
magnetofluid neglecting additional kinetic effects.
Incompressiblity of the flow is assumed for the sake of
simplicity. In this setting the nature of the turbulent energy
cascade is a central and still debated issue with different
phenomenologies being proposed [4–8] (cf. [9] for a re-
view). The associated spectral dynamics of kinetic and
magnetic energy, in spite of its comparable importance,
has received less attention (as an exception see [10]).

This Letter reports a spectral relation between residual
and total energy, ER

k � jE
M
k � E

K
k j and Ek � EK

k � E
M
k ,

respectively, as well as the influence of an imposed mean
magnetic field on the spectra. The proposed physical pic-
ture, which is confirmed by accompanying direct numeri-
cal simulations, embraces two-dimensional MHD
turbulence, globally isotropic three-dimensional systems
as well as turbulence permeated by a strong mean magnetic
field.

In the following, reference is made to two high-
resolution pseudospectral direct numerical simulations of
incompressible MHD turbulence, which we regard as para-
digms for isotropic (I) and anisotropic (II) MHD turbu-
lence. The dimensionless MHD equations,

@t! � r� �v�!� b� �r� b�	 ���!; (1)
05=95(11)=114502(4)$23.00 11450
@tb � r� �v� b� � ��b; (2)

r 
 v � r 
 b � 0; (3)

are solved in a 2�-periodic cube with spherical mode
truncation to reduce numerical aliasing errors [11]. The
equations include the flow vorticity,! � r� v, the mag-
netic field expressed in Alfvén speed units, b, as well as
dimensionless viscosity, �, and resistivity, �. In
simulation II forcing is applied by freezing the largest
spatial scales of velocity and magnetic field.

Simulation I evolves globally isotropic freely decaying
turbulence represented by 10243 Fourier modes. The initial
fields are smooth with random phases and fluctuation
amplitudes following exp��k2=�2k2

0�	 with k0 � 4. Total
kinetic and magnetic energy are initially equal with EK �
EM � 0:5. The ratio EK=EM decreases in time taking on
values of 0.28–0.23 in the period considered (cf. [12]). The
ratio of kinetic and magnetic energy dissipation rate,
"K="M, with � � � � 1� 10�4 also decreases during
turbulence decay from 0.7 to about 0.6, the difference in
dissipation rates reflecting the imbalance of the related
energies. The Reynolds number Re � EKE=��"tot� [3] at
t � 6 is about 2700 and slightly diminishes during the run.
Magnetic, HM � 1

2

R
V dVa 
 b, b � r� a, and cross he-

licity,HC � 1
2

R
V dVv 
 b, are negligible withHC showing

a dynamically unimportant increase from 0.03 to 0.07
during the simulation. The run covers 9 eddy-turnover
times defined as the time required to reach the maximum
of dissipation from t � 0. The large-scale rms magnetic
field decays from initially 0.7 to 0.3.

Case II is a 10242 � 256 forced turbulence simulation
with an imposed constant mean magnetic field of strength
b0 � 5 in units of the large-scale rms magnetic field brms ’
vrms ’ 1. The forcing, which keeps the ratio of fluctuations
to mean field approximately constant, is implemented by
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freezing modes with k � kf � 2. The simulation with
� � � � 9� 10�5 has been brought into quasiequili-
brium over 20 eddy-turnover times at a resolution of
5122 � 256 and spans about 5 eddy-turnover times of
quasistationary turbulence with 10242 � 256 Fourier
modes and Re � 2300 (based on field-perpendicular fluc-
tuations). Kinetic and magnetic energy as well as the ratio
EK=EM are approximately unity with a slight excess of EM.
Perpendicular to the imposed field, large-scale magnetic
fluctuations with brms ’ 0:4 are observed.
Correspondingly, "K="M ’ 0:95 during the simulation.
The system has relaxed to HC ’ 0:15 with a fluctuation
level of about 30% and HM ’ 0:2HM

Max with HM
Max �

EM=kf.
Fourier-space-angle integrated spectra of total, mag-

netic, and kinetic energy for case I are shown in Fig. 1.
To neutralize secular changes as a consequence of turbu-
lence decay, amplitude normalization is used assuming a
Kolmogorov total energy spectrum, Ek ! Ek=�"�5�, " �
�@tE, with wave numbers given in inverse multiples of the
associated dissipation length, ‘D � ��

3="�1=4. The quasi-
stationary normalized spectra are time averaged over the
period of self-similar decay, t � 6–8:9. As in previous
numerical work [13,14] and also observed in solar wind
measurements [15,16], Kolmogorov scaling applies for the
total energy in the well-developed inertial range, 0:01 &

k & 0:1. However, here the remarkable growth of excess
magnetic energy with decreasing wave number is of inter-
est. Qualitatively similar behavior is observed with large-
scale forcing exerted on the system. We note that no pileup
of energy is seen at the dissipative falloff contrary to other
high-resolution simulations [14,17]. Apart from different
numerical techniques and physical models, this difference
might be due to the limited simulation period at highest
resolution, namely, 5 [14] and 4.3 [17] large-eddy-turnover
times. Depending on initial conditions the energy spectrum
at 10243 resolution is still transient at that time.
FIG. 1. Total (solid line), kinetic (dashed line), and magnetic
(dotted line) energy spectra in 10243 case I simulation (normal-
ized, time-averaged, and compensated). Dash-dotted line: k�3=2

scaling.
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In case II, pictured in Fig. 2, strong anisotropy is gen-
erated due to turbulence depletion along the mean mag-
netic field, b0 (cf. also [18–22]). This is visible when
comparing the normalized and time-averaged field-
perpendicular one-dimensional spectrum, Ek? �R R

dk1dk2E�k?; k1; k2� (solid line) with the field-parallel
spectrum, defined correspondingly and adumbrated by the
dash-dotted line in Fig. 2. The fixed k? axis is chosen
arbitrarily in the k1 � k2 plane perpendicular to b0 where
fluctuations are nearly isotropic. For the strong b0 chosen
here, field-parallel and field-perpendicular energy spectra
do not differ notably from the ones found by considering
the direction of the local magnetic field as done, e.g., in
[18,23]. The field-parallel dissipation length is larger than
in field-perpendicular directions because of the stiffness of
magnetic field lines. The numerical resolution in the par-
allel direction can, therefore, be reduced.

While there is no discernible inertial range in the parallel
spectrum, its perpendicular counterpart exhibits an interval
with Iroshnikov-Kraichnan (IK) scaling, Ek? � k

�3=2
? .

(Note that due to identical energy scales in Figs. 1 and 2
the absolute difference between Kolmogorov and
Iroshnikov-Kraichnan scaling is the same as in Fig. 1.)
This is in contradiction to the anisotropic cascade phe-
nomenology of Goldreich and Sridhar (GS) for strong
turbulence predicting Ek? � k

�5=3
? [7] and with numerical

studies claiming to support the GS picture [23,24].
However, the strength of b0 in these simulations is of the
order of the turbulent fluctuations and consequently much
weaker than for the anisotropic system considered here.
We note that indication for field-perpendicular IK scaling
has been obtained in earlier simulations at lower resolution
using a high-order hyperviscosity and with a stronger mean
component, b0=b� 3� 102 [25]. The authors of the afore-
FIG. 2. Field-perpendicular total (solid line), kinetic (dashed
line), and magnetic (dotted line) energy spectra (normalized,
time-averaged, and compensated) in 10242 � 256 case II simu-
lation with b0 � 5. Dash-dotted curve: high-k part of field-
parallel total energy spectrum. Inset: perpendicular total energy
spectrum for resolutions of 5122 � 256 (dash-dotted line) to
10242 � 256 (solid line).
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FIG. 3. Compensated, space-angle-integrated residual energy
spectrum, ER

k , for the same system as in Fig. 1. Dash-dotted line:
k�2 scaling.
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mentioned paper, however, are unsure whether they ob-
serve a numerical artifact or physical behavior.

The strongly disparate spectral extent of field-parallel
and field-perpendicular fluctuations suggests that Alfvén
waves propagating along the mean field do not have a
significant influence on the perpendicular energy spectrum
(in the sense of Goldreich-Sridhar; cf. also [21]). Instead,
the strong b0 constrains turbulence to quasi-two-
dimensional field-perpendicular planes, as is well known
and has been shown for this particular system [18].

Another intriguing feature of system II is that EK
k ’ E

M
k

with only a slight dominance of EM (cf. Fig. 2) in contrast
to the growing excess of spectral magnetic energy with
increasing spatial scale for case I. Since both states are
dynamically stable against externally imposed perturba-
tions (as has been verified numerically), they presumably
represent equilibria between two competing nonlinear pro-
cesses: field-line deformation by turbulent motions on the
spectrally local time scale �NL � ‘=v‘ � �k3EK

k �
�1=2 lead-

ing to magnetic field amplification (turbulent small-scale
dynamo) and energy equipartition by shear Alfvén waves
with the characteristic time �A � ‘=b0 � �kb0�

�1 (Alfvén
effect). The conjecture can be verified via the eddy-
damped quasinormal Markovian (EDQNM) closure ap-
proximation [26], which yields evolution equations for
kinetic and magnetic energy spectra [27] by including a
phenomenological eddy-damping term for third-order mo-
ments. The spectral evolution equation for the signed [28]
residual energy, ER � EM � EK, in the case of negligible
cross helicity reads [29]

�@t � ��� ��k
2	ER

k �
Z

�
dpdq�kpq�T

R
res � T

R
crs � T

R
Dyn�

(4)

with the spectral energy flux contributions

TR
res � mkpq

k2

p
ER
pE

R
q � rkpq

p2

q
ER
qE

R
k ;

TR
crs � �mkpqpEqE

R
k � tkpqpE

R
qEk;

TR
Dyn �

skpq
k
�k2EpEq � p

2EqEk�:

The geometric coefficients mkpq, rkpq, skpq, tkpq, a conse-
quence of the solenoidality constraints (3), are given in
[29]. The ‘‘�’’ restricts integration to wave vectors k, p, q,
which form a triangle, i.e., to a domain in the p-q plane that
is defined by q � jp� kj. The time �kpq is characteristic
of the eddy damping of the nonlinear energy flux involving
wave numbers k, p, and q. It is defined phenomenologi-
cally, but its particular form does not play a role in the
following arguments.

Local triad interactions with k� p� q are dominating
the hydrodynamic turbulent energy cascade and lead to
Kolmogorov scaling of the associated spectrum (cf., for
example, [30]). In contrast, the nonlinear interaction of
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Alfvén waves includes nonlocal triads with, e.g., k
 p�
q. In this case a simplified version of Eq. (4) can be
derived:

@tE
R
k � ��kkE

R
k � TR

Alf ; (5)

with �k �
4
3 k
R
ak
0 dq�kpqEM

q [27] �kEM�.
It is now assumed that the right-hand side of (4) can be

written as TR
Alf � T

R
Dyn [10]. This states that the residual

energy is a result of a dynamic equilibrium between turbu-
lent dynamo and Alfvén effect. For stationary conditions
and in the inertial range, dimensional analysis of (4) and
(5) yields k3E2

k � k
2EMER

k which can be rewritten as

ER
k � kE

2
k: (6)

The relaxation time, �, appears as a factor on both sides of
the relation and, consequently, drops out. We note that with
�A � �kb0�

�1, where b0 is the mean magnetic field carried
by the largest eddies, b0 � �EM�1=2, and by redefining
�NL � ‘=�v

2
‘ � b

2
‘�

1=2 � �k3Ek�
�1=2 (for system II all in-

volved quantities are based on field-perpendicular fluctua-
tions) relation (6) can be obtained in the physically more
instructive form

ER
k �

�
�A

�NL

�
2
Ek: (7)

The modification of �NL is motivated by considering that
gradients of the Alfvén speed contribute to the nonlinear
transfer as much as velocity shear; see, e.g., [31].

For the examined setups relation (7) is consistent with
the underlying physical idea of dynamical equilibrium
between Alfvén and dynamo effect. At small scales with
k� k0 (for system II: k0 ’ kf), Alfvénic interaction al-
ways dominates the energy exchange since �A 
 �NL

(e.g., at k � 0:3l�1
D for system I: �A ’ 5� 10�2, �NL ’

0:2; for system II: �A ’ 1� 10�2, �NL ’ 0:1), which re-
sults in approximate spectral equipartiton of kinetic and
magnetic energy. At larger spatial scales the Alfvén effect
becomes less efficient in balancing the transformation of
2-3



FIG. 4. Compensated field-perpendicular residual energy spec-
trum for the same system as in Fig. 2.
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kinetic to magnetic energy by the small-scale dynamo with
�A ’ �NL (e.g., at k � 0:01l�1

D for system I: �A ’ 0:9,
�NL ’ 0:8; at k � 3� 10�3l�1

D for system II: �A ’ 1:2,
�NL ’ 0:9) allowing larger deviations from equipartition.

An interesting consequence of (6) is that the difference
between possible spectral scaling exponents, which is typi-
cally small and hard to measure reliably, is enlarged by a
factor of 2 in ER

k . Even with the limited Reynolds numbers
in today’s simulations such a magnified difference is
clearly observable (e.g., dash-dotted lines in Figs. 1 and
3). For system I with Kolmogorov scaling, Ek � k�5=3

(Fig. 1), relation (6) predicts ER
k � k

�7=3 in agreement
with the simulation (Fig. 3). In the case of Iroshnikov-
Kraichnan behavior, Ek? � k

�3=2
? as realized in system II

(Fig. 2), ER
k?
� k�2

? is obtained. This result is confirmed by
the residual energy spectrum shown in Fig. 4 (cf. also [32]
for two-dimensional MHD simulations and [10] for spec-
tral model calculations).

In summary, based on the structure of the EDQNM
closure equations for incompressible MHD, a model of
the nonlinear spectral interplay between kinetic and mag-
netic energy is formulated. Throughout the inertial range, a
quasiequilibrium of turbulent small-scale dynamo and
Alfvén effect leads to the relation, ER

k � kE
2
k, linking total

and residual energy spectra, in particular, ER
k � k

�7=3 for
Ek � k�5=3 and ER

k � k
�2 for Ek � k�3=2. Both predictions

are confirmed by high-resolution direct numerical simula-
tions, limiting the possible validity of the Goldreich-
Sridhar phenomenology to MHD turbulence with moderate
mean magnetic fields.
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