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Hot Cracks in Rubber: Origin of the Giant Toughness of Rubberlike Materials
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We study crack propagation in rubberlike materials and show that the nonuniform temperature
distribution which occurs in the vicinity of the crack tip has a profound influence on the crack propagation,
and may strongly enhance the crack propagation energy G�v� for high crack velocities v. At very low
crack-tip velocities, the heat produced at the crack tip can diffuse away, but already at moderate crack-tip
velocities a very large temperature increase occurs close to the crack tip resulting in a ‘‘hot-crack’’
propagation regime. The transition between the low-speed regime and the hot-crack regime is very abrupt
and may result in unstable crack motion, e.g., stick-slip motion or catastrophic failure.
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The invention of vulcanization by Charles Goodyear in
1839 represents one of the most important discoveries in
materials science. Natural rubber is, at room temperature, a
sticky substance (high-viscosity liquid) of limited techno-
logical importance. After cross linking of the long hydro-
carbon chains it forms a soft elastic solid with remark-
able elastic, frictional, and toughness properties, which
forms the basis for most practical applications involving
rubber, e.g., for tires, wiper blades, sealings, and conveyor
belts [1].

Rubber has one of the highest toughnesses of all known
materials. The toughness reflects the high energy G neces-
sary to propagate cracks [2–4]. Thus, the crack propaga-
tion energy G at crack velocities of order�1 cm=s may be
a million times higher than the surface energy of rubber.
This shows that the classical Griffith theory [5], whereG is
identified with the surface energy 2� of the created sur-
faces, is not directly valid for rubberlike materials. The
strong enhancement of G is mainly due to the viscoelastic
energy dissipation in front of the crack tip, which occurs
even at very low crack-tip velocities, e.g., 1 �m=s. In this
Letter we will show that the heating of the rubber close to
the crack tip enhances this viscoelastic energy dissipation,
and may result in crack propagation instabilities.

The strength of adhesion and cohesion of elastomers can
be characterized by the amount of energy G required to
advance the crack tip by one unit area. Experiments have
shown that G depends on the crack-tip velocity v and on
the temperature T and that [2–4] G�v; T� � G0�1�
f�v; T��, where f ! 0 as v! 0. Here f�v; T� describes
the bulk viscoelastic energy dissipation well ahead of the
crack tip, where the stress and strain are so small that linear
viscoelasticity theory should be a good approximation.
Thus, this term is determined by the viscoelastic modulus
E�!; T� of the rubber. The factor G0 � 2�0 is due to the
bond breaking at the crack tip (in the so called crack-tip
process zone), which involves highly nonlinear processes
[e.g., cavity formation, stringing, chain pullout (for poly-
mers), and bond breaking]. This factor cannot be calcu-
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lated theoretically at present, and is taken as an experi-
mental input in the theory presented below. The strongest
velocity and temperature dependence of G�v; T� is derived
from the factor f�v; T�, which at high crack-tip velocities
may enhance G by a factor 103 or more.

Consider a crack loaded in tension (mode I) in a visco-
elastic solid. We calculate the crack propagation energy
G�v�, which is an intrinsic material quantity that does not
depend on the geometry of the sample, or how the system is
loaded: in the following we focus on the simplest case of
plane stress [6]. For plain stress, the crack propagation
energy G is given by [7] G � K2=E, where E is the elastic
modulus. The stress intensity factorK is proportional to the
applied stress. Let us first calculate the bulk energy dis-
sipation per unit time and unit length of the crack line P for
the general case of a crack propagating with velocity v in a
linear viscoelastic solid. We have

P �
Z
d2x _�ij�ij; (1)

where �ij is the stress tensor and _�ij the strain rate tensor.
In continuum mechanics, for a homogeneous material, the
general form of the stress in the vicinity of a crack tip is
independent of the detailed relation between the stress and
strain (i.e., also valid for a viscoelastic material), and takes
the universal form [7]

�ij�x; t� �
K

�2�jx	 vtj�1=2
fij���: (2)

The tensorial aspect of the stress tensor enters via the
universal function fij��� that depends on the polar angle
� in the xy plane.

Now, let us consider the energy conservation condition
relevant to the crack propagation. In the present case, the
elastic energy stored in the solid in front of the crack tip is
dissipated at the crack tip. The flow of elastic energy into
the crack is given by Gv, which must equal the fracture
energy G0v plus the bulk viscoelastic dissipation P given
1-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.114301


PRL 95, 114301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 SEPTEMBER 2005
by (1): Gv � G0v� P. Substituting (2) into (1) and using
K2 � GE0 where E0 � E�0; T0� (where T0 is the back-
ground temperature) gives [6]�
G
G0

�
	1
� 1	

2

�

Z 1

0
dxx



Z 1

x
dyy	2�y2 	 x2�	1=2 Im

E0

E�x!c; Ty�
: (3)

In (3) we have introduced the large cutoff wave vector
qc � 2�=a, and the corresponding large cutoff frequency
!c � 2�v=a, where a is taken equal to the radius of the
crack tip. Tq is the temperature in the spatial region in front
of the crack tip probed by the q-wave number contribution
to the integral (3), and defined as Tq �

R
d2x�q�x�T�x�

with �q�x� � �q=2����r	 1=q�. We have defined q �
yqc and ! � x!c, and Ty stands for Tq with q � yqc.

The radius of curvature of the crack tip a can be calcu-
lated by considering that, in order for the crack to propa-
gate, the stress at the crack tip must be equal to some
characteristic (material dependent) yield stress �c. Using
(2), with � replaced by �c and jx	 vtj by a, leads to the
11430
relation 2��2
ca � K2. Substituting K2 � GE0 � 2�effE0

this equation gives �2
ca � E0�eff=�, which shows that the

crack-tip radius is proportional to the effective energyG �
2�eff necessary to propagate the crack. We define a refer-
ence radius a0 � E0�0=���2

c�, and obtain a=a0 � G=G0.
We determine Tq from the temperature field T�x; t�

which satisfies the diffusion equation

@T
@t
	Dr2T �

_Q�x; t�
�CV

; (4)

where _Q � _�ij�ij is the energy production per unit volume
and unit time as a result of the internal friction of the
rubber. The heat diffusivity D � 	=�CV , � is the mass
density, 	 the heat conductivity, and CV the heat capacity
per unit mass. For a crack moving with constant velocity
v we have _Q�x; t� � f�x	 vt�, so Eq. (4) can be easily
solved to get T�x; t� � T0 � ��CV�

	1
R
d2q�	iq � v�

Dq2�	1f�q�eiq��x	vt�, where f�q� is the Fourier transform
of f�x�. In our study we have neglected the angular depen-
dence of the viscoelastic energy dissipation _Q so that f�x�
depends only on r � jxj. This gives [8]
Ty
T0
� 1��
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FIG. 1 (color). The effective energy �eff to propagate the crack
as a function of the crack velocity v for two different values of
the dimensionless diffusivity 
0. The dashed line is obtained by
neglecting the flash-temperature effect.
where J0 is the zero order Bessel function and

H�p; q� �
�
p	3=2�2F1�3=4; 3=4; 1; q2=p2�� q < p
q	3=2�2F1�3=4; 3=4; 1;p2=q2�� p < q

;

(6)

where 2F1 is the Gauss’s hypergeometric function. In (5),

 � �a0v0=av�
0 and � � �0=��a0CVT0� where the di-
mensionless diffusivity 
0 � 2�D=�a0v0�, and where v0

is a reference velocity. We will assume that the Williams-
Landel-Ferry (WLF) transform [9] is valid so that
E�!; T� � E�!aT�, where aT � exp�	8:86�T 	 Tg 	
50�=�51:5� T 	 Tg��, where Tg is the glass transition
temperature. The WLF relationship is based on the ther-
mally activated (free volume) theory of viscosity [10].

We assume that the rubber obeys the very simple Kelvin
rheological model characterized by a single relaxation time
�. Thus, the complex elastic modulus of the rubber is
1=E�!; T� � 1=E1 � �1=E0 	 1=E1��1	 i!aT��	1. In
this case the reference velocity v0 � a0=�2���. Within
the Kelvin model, �eff=�0 as a function of v=v0 depends
only on the parameters �, E1=E0, T0 	 Tg, and 
0. Since
typically �0 � 30 J=m2, a0 � 3 nm, � � 103 kg=m3,
CV � 103 J=�kg K�. and T0 � 20 �C we get � � 30. In
all numerical calculations presented in this Letter we have
used E1=E0 � 1000, T0 	 Tg � 50 K, � � 10 or 100,
and several values for 
0.

Figure 1 shows the effective energy �eff to propagate the
crack as a function of the crack propagation speed for � �
100 and for two different values of 
0 � 2�D�=a2

0 [11].
Also shown is the isothermal solution (T  T0; dashed
line). At low crack-tip velocities the influence of the flash
temperature is negligible and all three curves overlap. At
higher crack velocities the effective energy �eff required to
propagate the crack is nonmonotonic, exhibiting a local
maximum and a local minimum, which may give rise to
crack propagation instabilities. As the velocity is increased
further, �eff finally increases proportional to the crack
speed. Note also that for the isothermal case, the quantity
�eff=�0 goes asymptotically to E1=E0 for very high crack-
tip velocities [12–17].

Figure 2 shows the effective energy �eff to propagate the
crack as a function of the crack propagation speed for � �
10 and for different values of 
0. Three different regimes
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FIG. 2. The effective energy �eff to propagate the crack as a
function of the crack velocity v for different values of the
dimensionless diffusivity 
0.
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are shown: (i) the low-speed regime where the increase of
temperature in the rubber is negligible, (ii) the hot-crack
regime, and (iii) the cold-crack regime corresponding to
isothermal condition.

In Fig. 3 we show the temperature profile in the rubber,
as a function of the distance from the crack tip in units of a,
for different crack velocities. Notice that for large crack-tip
velocities, the distance region in front of the crack tip
where T � T0 is quite large, of order �10a.

The reason the crack propagation energy increases (for
large crack-tip velocities) when the crack-tip flash-
temperature effect is taken into account can be understood
as follows. Consider a propagating crack and let us first
neglect the flash-temperature effect, i.e., we assume that
the temperature everywhere equals the background tem-
perature T0 [Fig. 4(a)]. At high crack-tip velocity v, the
region close to the crack tip is effectively in the glassy
state, and contributes very little to the total viscoelastic
energy dissipation. Similarly, the region very far away
from the crack tip is effectively in the rubbery region of
the viscoelastic spectra, and contributes also very little to
the total energy dissipation. Most of the viscoelastic energy
dissipation occurs in the transition region between the
FIG. 3. The temperature profile in front of the crack tip for

0 � 1011 and for three different values of crack-tip velocity.
The temperature increase is significant for r & 100a.
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rubbery and glassy region (dark gray area in Fig. 4).
Now, let us include the flash-temperature effect. Because
the crack tip moves toward the region where the viscoelas-
tic energy dissipation occurs, the temperature increase is
highest close to the crack tip. Thus, part of what was the
glassy region when the temperature effect was neglected
will now correspond to the transition region and will
contribute strongly to the total viscoelastic energy dissipa-
tion. On the other hand, what was the outer rim of the
transition region when the flash-temperature effect was
neglected will now be converted into the rubbery region,
and will contribute very little to the total energy dissipa-
tion. However, since the temperature decreases monotoni-
cally with the distance from the crack tip, the reduction in
the energy dissipation in the outer region is overcompen-
sated by the increases in the energy dissipation in the inner
region closer to the crack tip. The net effect is that the total
energy dissipation increases when the flash-temperature
effect is taken into account. By increasing the crack speed,
the dark gray region will become larger and larger until it
reaches the crack tip: when this happens the crack is in the
asymptotic hot-crack regime.

The reason for the nonmonotonic behavior of the G�v�
relation can be understood as follows. In all casesG�v� first
increases and becomes larger than for the isothermal case
before reaching the ‘‘flat’’ region. When this happens the
crack-tip velocity is already high enough that the rubber at
the crack edge is in the glassy region, or at least on the
glassy side of the transition region. Thus, the initial in-
crease in the temperature will shift the region close to the
crack tip into the middle of the transition region of the
viscoelastic spectra, and G�v� increases beyond the iso-
(b)

T(x) > T 0

with crack-tip flash temperature

FIG. 4. A qualitative picture of what happens when the flash
temperature is included in the theory. See text for details.
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thermal curve. However, a further increase in the velocity
increases the temperature even more and shifts the region
close to the crack tip toward the rubbery side of the
transition region in such a way that G�v� is now nearly
constant (or even decreasing). However, at very high ve-
locities the region close to the crack tip get shifted back
towards the middle of the transition region, and then it
stays there for arbitrary high crack-tip velocity; this is the
so called hot-crack regime.

The theory presented above explains why unstable crack
propagation is observed [18–20]. In the transition region
between the low-speed regime and the hot-crack regime, a
very rapid increase of crack propagation energy is first
observed (see Fig. 1), followed by an almost flat region
which is smoothly connected to the hot-crack regime. The
overall transition region covers a velocity range of about
2 order of magnitude. Thus, in a displacement controlled
test, as the system is loaded, the crack initially moves very
slowly, and when it reaches the transition region its veloc-
ity is still very small (v < 10	4 m=s�, so that its propaga-
tion cannot be easily detected. By increasing the dis-
placement further, a big amount of energy is stored in the
solid, and when the flat area is reached the crack starts to
propagate quite fast v > 10	2 m=s, giving rise to the ob-
served instability. However, the present theory cannot be
used to study the detailed dynamics of the stick slip as this
involves nonuniform crack-tip motion.

The most detailed experimental study of stick-slip crack
propagation in rubber was presented in Ref. [20]. They
observed that when the (average) crack-tip velocity is in
the range�0:1–10 cm=s unstable crack propagation occur.
In this velocity region cracks grow at a slow or fast rate.
Furthermore, the slope of the logG	 logv curve is much
higher for the high-velocity branch. Both these facts are
in good qualitative agreement with our analytical results
(see Figs. 1 and 2). In Ref. [20] it was also found that
the crack surfaces during slow crack propagation (left
branch in Fig. 2) was very rough, while very smooth crack
surfaces resulted when the crack propagated fast (right
branch in Fig. 2). However, this change in surface mor-
phology is not the primary reason for the two G�v� crack
propagation branches, but rather a consequence of it. Thus,
we believe that at high crack-tip velocities, the high tem-
perature at the crack tip will result in a ‘‘liquidlike’’ region
at the crack tip. This in turn will results in the formation of
thin uniform layers of modified (degraded) rubber on the
crack surfaces [21,22]. We note that it should be possible to
study the temperature rise in the vicinity of the crack tip
using an infrared camera with high spatial and temporal
resolution.

Recent experiments [23] have detected fast crack propa-
gation in natural rubber, where the crack-tip velocity
�60 m=s is of the order of rubber sound velocity. Crack
propagation in natural rubber is more complex than for
most other types of rubber because of strain crystallization
close to the crack tip.
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An important problem is to determine under what cir-
cumstances crack propagation will follow the hot-crack
branch and the cold-crack branch. If the crack-tip velocity
is increased very slowly so that the temperature field
around the crack tip can be fully developed, our calcula-
tions [8] show that for all physically reasonable rubber
parameters, the crack will always follow the hot-crack
branch. However, if the crack tip is initially accelerating
very fast, there is not enough time for the full temperature
distribution to develop, and in this case the system may
follow the cold-crack branch. Thus, we believe that the
path the system takes depends on how the crack is gen-
erated initially.
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