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Spectral Fluctuations and 1=f Noise in the Order-Chaos Transition Regime
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Level fluctuations in a quantum system have been used to characterize quantum chaos using random
matrix models. Recently time series methods were used to relate the level fluctuations to the classical
dynamics in the regular and chaotic limit. In this, we show that the spectrum of the system undergoing
order to chaos transition displays a characteristic f�� noise and � is correlated with the classical chaos in
the system. We demonstrate this using a smooth potential and a time-dependent system modeled by
Gaussian and circular ensembles, respectively, of random matrix theory. We show the effect of short
periodic orbits on these fluctuation measures.
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Quantum chaos, the study of quantum analogues of
classically chaotic systems, is characterized by the fluctua-
tion properties of the spectrum of its Hamiltonian operator.
For quantum systems with regular classical dynamics the
spectral fluctuations are Poisson distributed [1]; i.e., the
eigenvalues tend to cluster together. On the other hand, one
of the remarkable results established by Bohigas et al. is
that the level fluctuation properties of quantum systems,
whose classical limit is chaotic, are identical to those of an
appropriate ensemble from random matrix theory (RMT)
[2]. This is the level repulsion regime where the eigenval-
ues tend to repel one another. In this sense, characterizing
quantum chaos in terms of the presence or absence of level
repulsion requires invoking the spectral properties of ran-
dom matrix ensembles. Recently, in analogy with time
series, a method has been proposed to characterize spectral
fluctuations using inherent properties of the spectrum [3].
If the eigenvalues of Hamiltonian operators could be
thought of as a time series and its index the time in some
units, then the methods of traditional time series analysis
can be applied to it. It was shown that the ensemble
averaged power spectrum hS�f�i of the fluctuations in the
cumulative level density, goes as 1=f or 1=f2 depending on
whether the system is classically chaotic or regular [4].
This work also showed examples of atomic level sequences
displaying 1=f noise. Thus, atomic levels join the host of
other systems and phenomena that display 1=f noise lend-
ing strength to the well-known cliché that 1=f noise is
ubiquitous in nature [5].

In this Letter, we study the transition from regularity to
chaos in mixed systems. In such systems the regular and
chaotic motion coexist and this is a generic feature. For
instance, the entire class of atoms in strong fields and the
range of problems involving atoms in time-varying fields
belong to this class. We study a smooth Hamiltonian
system, the quartic oscillator and a time-dependent system,
the kicked top. In both these systems, a single parameter
that controls the classical chaos can be varied to get a
smooth transition from regular to predominantly chaotic
dynamics. It is well known that the level fluctuations in
these systems can be modeled by RMT [2]. From an RMT
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point of view, these models possess symmetries (time-
reversal invariance without spin-1=2 interactions) such
that the kicked top is part of the circular orthogonal en-
semble whereas the coupled oscillator falls in the Gaussian
orthogonal ensemble (GOE) of RMT [6]. Based on the
numerical evidence from these models we show that
hS�f�i / f��, where � depends on the degree of their
classical chaos. This correlation between � and the classi-
cal chaos parameter is established using semiempirical
level spacing distributions studied in the context of RMT
to model the transition region.

In semiclassical systems of the type we consider here,
periodic orbits via the Gutzwiller formalism play an im-
portant role in determining the quantum spectrum [6]. As
pointed out by Berry [7], the properties of the spectrum on
a scale of mean level spacing are determined by long time
period orbits and in a sense both of them display universal-
ity; the RMT-type universality in the spectrum and classi-
cal universality embodied in the Hannay-Ozorio sum rule
[8]. However, long range spectral properties are deter-
mined by the short time periodic orbits which are system
specific and are not universal. This manifests itself in the
power spectrum as deviations from the f�� behavior. We
show the effect of short time periodic orbits in the coupled
oscillator, where scarring or the density enhancements in
the vicinity of certain periodic orbits [9] is a prominent
feature due to these orbits.

The Hamiltonian for the coupled quartic oscillator is
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This system is classically integrable for � � 0; 2; 6 and the
phase space is predominantly chaotic for �> 6. This has
been extensively studied as a model for chaotic dynamics
in a smooth potential [10,11]. The Hamiltonian is quan-
tized by solving the corresponding Schrödinger equation in
the basis of the eigenfunctions corresponding to � � 0.
Then, the matrix elements of Hamiltonian operator Ĥ1 is
computed in this basis and the matrix of order 13000 is
diagonalized to obtain about 2000 converged eigenvalues.
This system possesses C4v point group symmetry. We
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FIG. 1 (color online). �m �m curve for (a) kicked top and
(b) quartic oscillator. The solid curve corresponds to chaotic case
(k � 7, � � 20), the dotted curve to the intermediate region
(k � 3, � � 12), and the dashed curve to regular limit (k � 1,
� � 0).
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symmetry decompose the spectrum and study the levels
from only the A1 irreducible representation.

The quantum top [12] is characterized by an angular
momentum vector J, whose components �Jx; Jy; Jz� obey
the usual commutation relations and J2 � j�j� 1�, j �
1
2 ; 1;

3
2 ; . . . is conserved. The dynamics of the top is gov-

erned by the Hamiltonian [12], H2�t� �
�
2 Jy �

k
2j J

2
z
P
n��t� n�. The first term describes the precession

around the y axis with angular frequency �=2 and the
second term kicks in periodically with �-function kicks
of strength k. Each kick can be thought of as an impulsive
rotation about the z axis by an angle kJz=2j. The time
evolution operator in between consecutive kicks is
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If ei� are the eigenvalues of U, then the power spectrum is
computed from the quasienergy �. In the limit j! 1, we
can derive a classical map whose dynamics depends on the
parameter k [12]. At k � 0 it is integrable and becomes
increasingly chaotic for k > 0.

We denote the eigenvalues of the appropriate operator
described above by Ei, i � 1; 2; . . . ; n� 1. The integrated
level density, that counts the number of levels below a
given E, can be decomposed into an average and an oscil-
lating part, N�E� � �N�E� � Nosc�E�. In order to compare
the fluctuations from various systems it is customary to
unfold the spectrum by a transformation �i � �N�Ei�, such
that the mean level density of the transformed levels is
unity. All further analysis is carried out using the sequence
f�g. For instance, the spacing is si � �i�1 � �i, i �
1; 2; . . . ; n. In this Letter, we will work with the statistic
given by

�m�
Xm
i�1

�si�hsi���Nosc�Em�1� m�1;2; . . . ;n: (3)

Once the unfolding is performed, on average, a unit inter-
val of the spectrum will have one level. Hence, �m repre-
sents the cumulative deviation until mth level, of the ith
unfolded level from i. This quantity has a formal analogy
with a time series. If the index i represents the (scaled)
time, then �si � hsi� represents the actual value assumed by
the series at the ith time instant. Following Ref. [3], we
take the power spectrum of �m as

S�f� � j�̂fj
2 �

��������
1������������
n� 1
p
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�m exp
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where f � 1; 2; . . . ; n; �̂f is the Fourier transform of �m.
Now, we will present results to infer that hS�f�i / f�� and
� depends on the degree of chaos in the system.

Before we plunge into the results, we show the statistic
�m for our models. For the quartic oscillator, using the
results in Refs. [13] we symmetry decompose the level
density to obtain the asymptotic integrated level density for
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the A1 representation,
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where F�:� is the Gauss’s hypergeometric function. We use
this expression to unfold the quartic oscillator levels.
Figure 1 displays �m �m for the quartic oscillator and
the kicked top for a choice of 3 parameters in the regular,
the chaotic, and the transition region. In Fig. 1(a) for the
kicked top, the dashed curve corresponding to nearly the
Poisson spectrum (k � 1) differs markedly from the solid
curve for almost the GOE (k � 7) limit. We also plot an
intermediate case (dotted curve) to show the transition
taking place from Poisson to GOE-type spectrum. This
intermediate case at k � 3 is also qualitatively different.
Each series displays slightly different memory effects cor-
responding to various shades of antipersistent time series.
In fact, such time series are known to display f�� noise and
we expect similar result based on this analogy. We observe
similar features for the quartic oscillator in Fig. 1(b) for
� � 6; 11:5; 19:5, as reported in an earlier work of Bohigas
[14].

In Figs. 2 and 3 we display the ensemble averaged power
spectrum of �m. Ensemble averaging is done as follows:
for each � of the quartic oscillator we obtain 2000 levels.
After leaving out the first 200 levels, we create 3 sequences
of 600 levels each. We further obtain similar sequences
from more values of � separated by �� � 0:1. For in-
stance, � � 11:5 in Fig. 3(b) corresponds to the ensemble
average in the range � � 11:2–11:8 in steps of 0.1. Hence,
the results [except for the integrable case in Fig. 3(a)]
represent an average over 21 level sequences of length
600 each. For the integrable case, the ensemble consists
1-2



FIG. 2. Power spectrum of �m for kicked top at (a) k � 1:0,
(b) k � 2:0, (c) k � 3:0 and (d) k � 7:0. The solid line is the
least squares fit. The slope � is indicated in each graph.
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of 9 level sequences (3 from each of � � 0, 2, and 6) of
length 600 each. Similar averaging is done for the kicked
top with 11 level sequences of length 800 each. For the
regular and chaotic limits shown in Figs. 2(a) and 2(d) and
Fig. 3(a) and 3(d) there is a good agreement with the
predicted slopes of � � 2; 1 respectively [4]. There are
deviations for f < fmin due to the effect of short periodic
orbits with scaled time period fmin. The deviation for large
f arises, partly, from approaching the Nyquist frequency at
f � �n� 1�=2. It is clear from Figs. 2(b), 2(c), 3(b), and
3(c), that as the oscillator and the top explore the inter-
FIG. 3. Power spectrum of �m for quartic oscillator at
(a) � � 0; 2; 6; (b) � � 7:5; (c) � � 11:5; and (d) � � 19:5.
The solid lines are the least squares fit with intercept shifted for
clarity. The slope � is indicated in each graph. The arrows in
(b)–(d) indicate logfmin, the time period of the short periodic
orbit.
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mediate region between the regular and the chaotic limits,
the slope � smoothly changes from 2 to 1. Intuitively, we
can expect this because other statistics in the transition
regime, e.g., spacing distribution, generally vary smoothly
too in this regime.

In order to obtain a global picture, we compute the
exponent � for a range of parameter values of � and k in
the order-chaos transition region. In RMT, this transition is
described by a semiempirical spacing distribution P�s;��
characterized by the parameter �. As � is varied from 0 to
1, P�s;�� changes smoothly from Poisson to GOE, reflect-
ing the change in classical dynamics from regularity to
chaos. Here, we use the distribution PT�s;�� due to
Izrailev [15]. For � � 0, PT�s;�� gives a Poissonian
form (integrable limit) and for � � 1 it closely approxi-
mates the GOE distribution (chaotic limit). The intermedi-
ate values, 0<�< 1, correspond to the order-chaos
transition. Figs. 4(a) and 4(b) show that the series of �
and � display similar trends and are strongly correlated for
both the top and the oscillator. It is known that the fraction
of regular regions in phase space is correlated with a
parameter like � that characterizes the change in spacing
distribution [16]. Hence we infer that the exponent � in the
power spectrum reflects the qualitative trends in the clas-
sical dynamics of the system. In general, we have shown
that hS�f�i / f��, where the value of 1 � � � 2 relates to
the nature of classical dynamics for the oscillator and the
top.

As opposed to purely random matrices, the semiclassical
systems deviate from f�� scaling [4] for f < fmin, where
fmin is the period tmin of the shortest periodic orbit (PO)
scaled by the Heisenberg time �tH � 2�@� [7], i.e., fmin �
�n� 1�tmin=tH. This corresponds to short POs being sys-
tem specific features and in the corresponding large energy
scales universality breaks down leading to deviations from
RMT based results [7]. Since the spectral form factor is
FIG. 4. The parameter � (squares) in PT�s� as a function of
chaos parameter for (a) the kicked top and (b) quartic oscillator.
The shifted slope 2� � (circles) of the power spectrum hS�f�i is
shown. The slope is shifted so that the y axis lies in the range 0 to
1.
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FIG. 5 (color online). The effect of short periodic orbits in the
spectrum. hS�f�i for quartic oscillator at � � 30 including the
localized states (dotted line). The solid line is the power spec-
trum after localized states are removed. The arrow indicates fmin.
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linear only for times t=tH < 1, which is necessary to realize
1=f noise [4], the actual range of scaling is restricted to
fmin 	 f	 fH. Since all times are scaled by tH, at t �
tH, we have fH � �n� 1�. The short PO in the quartic
oscillator is the ‘‘channel orbit,’’ as it is referred to in the
literature, with the initial condition (q1 � 0, q2, p1 � 0,
p2). This can be identified by taking discrete Fourier trans-
form of the scaled energies of the oscillator [14]. The
period of this orbit is t�E� � E�1=4

���
�
p

��1=4�
2��3=4� . Among all

the sequence of levels that form the ensemble let the largest
level be E � E0. Then, the period of the short PO is tmin �
t�E0�. For instance, at � � 11:5, we have E0 � 2579:05
(@ � 1) and n � 600 and this provides the theoretical
bounds for scaling to be log�fmin� � 1:54 and log�fH� �
2:77, as indicated in Fig. 3(c). It is evident from Figs. 3(b)–
3(d) that hS�f�i / f�� in almost the entire theoretically
expected range fmin 	 f	 fH. This scaling range can be
increased by probing deep in the semiclassical (@! 0)
regime, since tH � @

�1 � E3=4 for the quartic oscillator.
But this leads to large eigenvalue problems that may not be
computationally feasible at present.

In Fig. 5, we show the effect of short periodic orbits on
the power spectrum of �m. Note that for the quartic oscil-
lator at � � 20, � � 1:073 whereas for � � 30 we have
� � 1:322 and � also shows a similar trend (see Fig. 4). In
general, we would expect that as � increases monotoni-
cally chaos also increases and hence the agreement with
RMT should get better. But the numbers quoted above
show that, roughly speaking, chaos at � � 20 is more
than at � � 30. This ‘‘anomalous’’ feature is the effect
of oscillating stability of the short PO. At � � 20; 30 the
short PO undergoes an antipitchfork and a pitchfork bifur-
cation, respectively, accompanied by local changes in the
phase space structure [17]. This, in turn, affects the spectral
levels. It is known that the short POs influence a series of
eigenstates, called the localized or sometimes the scarred
states, in the quartic oscillator spectrum and they deviate
strongly from RMT for eigenvector statistics [11,18,19]. If
we remove the spacings that involve localized states, then
we might expect the resulting distribution to show a better
agreement with RMT. This is like removing the effect of
short POs in the spectrum. The dotted line in Fig. 5 is the
usual power spectrum and the solid line is the one whose
spacings involving localized states are removed. In this
example the ensemble has just 3 sequences of 600 levels
each which is reflected in large amplitude of fluctuations.
The power spectrum changes character for f < fmin and
the range of validity of power law gets better. This is a
manifestation of the effect of short POs in the spectrum.

In summary, we have shown that the spectral fluctua-
tions in the quartic oscillator and the kicked top display
f�� noise, where the value of � within the limits 1 � � �
2 reflects the underlying nature of classical dynamics,
namely, regular or chaotic or a mixture thereof. We show
the effect of short POs on the spectral fluctuations. We
11410
expect f�� type noise in the level fluctuations to be an
inherent characteristic of quantum systems.

We thank Professor V. B. Sheorey and Dr. Dilip Angom
for useful discussions.

Note added.—After this work was communicated, quali-
tatively similar results obtained on a billiard system were
published [20].
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