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Soliton Mobility in Nonlocal Optical Lattices

Zhiyong Xu, Yaroslav V. Kartashov,* and Lluis Torner
ICFO-Institut de Ciencies Fotoniques, and Universitat Politecnica de Catalunya, Barcelona, Spain

(Received 27 February 2005; published 9 September 2005)
0031-9007=
We address the impact of nonlocality in the physical features exhibited by solitons supported by Kerr-
type nonlinear media with an imprinted optical lattice. We discover that the nonlocality of the nonlinear
response can profoundly affect the soliton mobility, hence all the related phenomena. Such behavior
manifests itself in significant reductions of the Peierls-Nabarro potential with an increase in the degree of
nonlocality, a result that opens the rare possibility in nature of almost radiationless propagation of highly
localized solitons across the lattice.
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During the last two decades spatial solitons have become
a subject of intense investigation because of their unique
physical features [1]. Properties of solitons supported by
media with local nonlinear response are now well estab-
lished. However, under appropriate conditions, the non-
linear response of materials can be highly nonlocal, a
phenomenon that drastically affects the propagation of
intense laser radiation [2,3]. The nonlocality of nonlinear
response comes into play when the transverse extent of the
laser beam becomes comparable with the characteristic
response length of the medium. The nonlocal nonlinear
response allows suppression of the modulation instability
of the plane waves in focusing media [4]; it prevents
catastrophic collapse of multidimensional beams [5,6]
and stabilizes complex soliton structures, including vortex
solitons [7]. Principally new effects attributed to nonlocal-
ity have been studied in photorefractive crystals [8],
thermo-optical materials [9], liquid crystals [10], plasmas
[11], and Bose-Einstein condensates with long-range in-
terparticle interactions [12].

Soliton properties are also strongly altered by transverse
modulations of refractive index. One of the principal prop-
erties featured by the corresponding discrete or lattice
solitons is their restricted mobility in the transverse plane,
the effect that might be employed for various switching
and routing operations [13,14]. Recent progress in creation
of reconfigurable optical lattices in photorefractive crystals
[15] and nematic liquid crystals [10] opened a direct way to
explore the properties of solitons by varying the lattice
depth and period. However, photorefractive media and
liquid crystals may feature a strong nonlocal nonlinear
response. Therefore, a principal question arises about the
effect of the interplay of periodic refractive index modu-
lation and nonlocality of nonlinear response on fundamen-
tal soliton properties, including their mobility. An intui-
tively similar, but physically drastically different scenario
is the tunable self-bending of solitons in lattices made in
media with diffusive nonlinearity [16]. In this Letter, we
address the properties of solitons in Kerr-type nonlocal
nonlinear media with an imprinted transverse periodic
modulation of the refractive index. Our central discovery
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is that a tunable nonlocality can greatly enhance the soliton
mobility, opening the possibility of almost radiationless
soliton propagation across the lattice. We employ a generic
model for the nonlocal nonlinearity, which provides insight
for all physical settings governed by nonlocality kernels
with an exponential-decaying range, including photore-
fractive and liquid crystal optical media, as well as in
models of Bose-Einstein condensates with long-range in-
terparticle interactions [12].

For concreteness, here we consider the propagation of
the light beam along the z axis in a nonlocal nonlinear
Kerr-type medium with an imprinted modulation of linear
refractive index described by the system of phenomeno-
logical equations for dimensionless complex light field
amplitude q and nonlinear correction to the refractive
index n [3–6]:
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where � and � stand for the transverse and longitudinal
coordinates scaled to the beam width and diffraction
length, respectively; the parameter d stands for the degree
of nonlocality of the nonlinear response; the parameter p is
proportional to the refractive index modulation depth; and
the function R��� � cos�2��=T� describes the transverse
refractive index profile, where T is the modulation period.
We assume that the depth of the refractive index modula-
tion is small compared to the unperturbed index. In the
limit d! 0, the system (1) reduces to the nonlinear
Schrödinger equation. The opposite case d! 1 corre-
sponds to the strongly nonlocal regime. Among the con-
served quantities of system (1) are the energy flow U and
the Hamiltonian H
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FIG. 1. Profile of (a) odd and (b) even solitons with energy
flow U � 4 and corresponding nonlinear refractive index distri-
butions. (c) Energy flow versus propagation constant for odd and
even solitons. In (a)–(c) the degree of nonlocality d � 2.
(d) Perturbation growth rate versus energy flow of even solitons
at a different degree of nonlocality. Lattice depth p � 3. Gray
regions in (a) and (b) correspond to R��� 
 0, while in white
regions R���< 0.

PRL 95, 113901 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 SEPTEMBER 2005
where G��� � �1=2d1=2� exp��j�j=d1=2� is the response
function of the nonlocal medium. We search for stationary
solutions of Eq. (1) in the form q��; �� � w��� exp�ib��,
where w��� is a real function and b is a real propagation
constant. Substitution into (1) yields

d2w

d�2 � 2wn� 2pRw� 2bw � 0;

d
d2n

d�2 � n� w
2 � 0;

(3)

where n stands for the stationary refractive index profile.
We solved these equations numerically with a relaxation
method. We set T � �=2 and vary b, p, and d. To elucidate
the linear stability of the solitons, we searched for per-
turbed solutions in the form q��; �� � �w��� � u��; �� �
iv��; ��� exp�ib��, where the real u��; �� and imaginary
v��; �� parts of the perturbation can grow with a complex
rate � upon propagation. Linearization of Eq. (1) around a
stationary solution yields the eigenvalue problem
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where �n � 2
R
1
�1G��� ��w���u���d�. The system (4)

can also be solved numerically.
First, we address properties of lowest-order odd and

even solitons. The absolute intensity maximum for odd
solitons coincides with one of the local maxima of R���
[Fig. 1(a)], whereas even solitons are centered between
neighboring lattice sites [Fig. 1(b)], and can be viewed as a
nonlinear superposition of in-phase odd solitons. With an
increase of lattice depth the soliton energy concentrates in
the guiding lattice sites (the regions of local refractive
index maxima) so that lattice solitons approach their dis-
crete counterparts [13]. The energy flow U for both odd
and even solitons is a monotonically growing function of
the propagation constant b, and it vanishes in the cutoff bco

point, which is identical for odd and for even solitons
[Fig. 1(c)]. The cutoff bco for odd and even solitons is a
monotonically growing function of lattice depth p, and we
found that it does not depend on the nonlocality degree d.
This is the consequence of the fact that both odd and even
solitons reside in the semi-infinite gap of Floquet-Bloch
spectrum of linear lattice that is independent of the non-
locality degree d so that bco always coincides with the
lower edge of this gap (see Ref. [17] for a detailed dis-
cussion of the band-gap lattice structure and bifurcations of
gap solitons in local cubic media). At fixed energy flow and
lattice parameters the soliton gets broader and its peak
amplitude decreases with an increase of d. Linear stability
analysis revealed that odd solitons are stable, and even
solitons are unstable in the entire domain of their existence,
similar to the case of local medium [17]. However, the
perturbation growth rate for an even soliton is drastically
11390
reduced with an increase of nonlocality [Fig. 1(d)], so that
even solitons with moderate energy flows U can propagate
undistorted in a highly nonlocal medium, even in the
presence of random perturbations of the initial conditions,
over distances exceeding any experimentally feasible crys-
tal length by several orders of magnitude. Therefore, a first
important result uncovered is that nonlocality largely re-
duces the strength of symmetry-breaking instabilities.

We also found families of twisted solitons that can be
considered combinations of several odd solitons with en-
gineered phases [18] (see Fig. 2 for illustrative examples).
The energy flow of twisted solitons is a nonmonotonic
function of propagation constant, and there exists a lower
cutoff for the existence of such solitons [Fig. 2(c)]. The
slope dU=db of the curve U�b� becomes negative in a
narrow region near the cutoff, not even visible in
Fig. 2(c). Contrary to the case of odd and even solitons
the cutoff bco for twisted solitons increases with an in-
crease of the nonlocality degree d. Stability analysis re-
vealed that twisted solitons feature both exponential and
oscillatory instabilities near the lower cutoff for their ex-
istence [see Fig. 2(d)]. However, we found that they be-
come completely stable above a certain energy flow
threshold. The width of the instability domain for twisted
solitons decreases with an increase of lattice depth and
increases with the growth of the nonlocality degree.

As one can see from Figs. 1(a), 1(b), 2(a), and 2(b), for
all solitons found the nonlinear refractive index distribu-
tion in nonlocal media with d	 1 always features a
smooth symmetric bell-like shape without pronounced
local maximums on top of it, thereby smoothing over the
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FIG. 2. Profile of (a) first and (b) second twisted solitons and
nonlinear refractive index distributions corresponding to points
marked by circles in dispersion diagram (c). Lattice depth p �
3; nonlocality degree d � 2. (d) Real part of perturbation growth
rate for first twisted soliton at p � 2:5 and various d values.
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total refractive index profile n� pR. This is in clear con-
trast to the local cubic medium, where focusing nonline-
arity tends to further increment the transverse refractive
index modulation that, in turn, results in a restricted mo-
bility of high-energy excitations. Therefore, the nonlocal-
ity of the nonlinear response could greatly enhance
transverse soliton mobility, which is the central result of
this Letter.

Figure 3 confirms this central result. The plot shows the
Peierls-Nabarro (PN) barrier, defined as a difference �H �
Heven �Hodd between Hamiltonians for even and odd soli-
tons carrying the same energy flow U [19]. Since upon
motion across the lattice the solitons pass through odd and
even states, thus accompanied by the corresponding
changes in Hamiltonian (or potential energy, when solitons
are viewed as particles), the higher the barriers the larger
the incident angle (or kinetic energy) required to overcome
them. As expected, the height of the PN barrier grows with
the increase of soliton energy flow U and lattice depth p
[Fig. 3(a)]. However, the nonlocality reduces drastically
the value of PN barrier [Fig. 3(b)]. The physical implica-
tion is that corresponding solitons can move across the
lattice almost without radiation losses, because even small
FIG. 3. Height of the PN barrier versus (a) soliton energy flow
at d � 4 and (b) degree of nonlocality at p � 3.
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angles are sufficient to overcome the reduced PN barrier.
Therefore an increasing degree of nonlocality affords very
significant enhancement of the mobility of high-energy
lattice solitons, a feature with both fundamental and po-
tential practical relevance. Since odd solitons are ground-
state solutions and realize the most energetically favorable
state of the system, the difference �H can also serve as a
measure of the instability of even solitons that is drastically
reduced with an increase of the nonlocality degree. Notice
that on physical grounds, the enhanced mobility of non-
local lattice solitons cannot be attributed to any variation of
soliton stability (as it occurs in some discrete systems with
intersite interactions [20]), but solely to refractive index
smoothing induced by the nonlocality.

The expectations based on the reduction of the PN
barrier are fully confirmed by numerical integration of
Eq. (1). Figure 4 illustrates the point. To stress the physical
robustness of our findings, here we present results obtained
with inputs in the form q��; � � 0� � � sech�����
exp�i���, where � stands for the incident angle. In gen-
eral, soliton motion across the lattice is accompanied by
radiative losses that eventually lead to soliton capture in
one of the lattice channels [Fig. 4(c)]. The radiation losses
are drastically reduced by the nonlocality. For example, a
soliton with � � 1:2 trapped in the 10th channel of the
lattice imprinted in a fully local medium loses about 40%
of its input energy flow, while in a nonlocal medium with
d � 0:3 the energy losses are less than 10%. Further
decreases of the radiation are achieved by increasing the
degree of nonlocality. Let the soliton be trapped in the Nth
channel if NT�T=2<�max<NT�T=2 at �! 1, where
�max is the transverse coordinate of the soliton center. The
output channel number decreases with an increase of lat-
tice depth p [Fig. 4(a)], but we found that it does grow with
FIG. 4. (a) Output channel number versus lattice depth at d �
0:08. (b) Output channel number versus nonlocality degree at
p � 1. (c) Soliton propagation trajectories at d � 0:1 (1), 0.26
(2), and 0.4 (3). Lattice depth p � 1. In all cases the input soliton
form factor � � 1:2 and incident angle � � 0:5.
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an increase of nonlocality [Fig. 4(b)]. Importantly, small
variations of the nonlocality impact strongly the value of
the output channel number, a result that stresses the new
degree of freedom afforded by the nonlocality.

It is worth stressing that the physical mechanism behind
the enhanced soliton mobility in nonlocal media put for-
ward here is principally different from the tunable bending
that occurs in media with diffusion asymmetric nonlinear-
ity [16], where a highly anisotropic nonlinear response
results in asymmetric self-induced refractive index profiles
and causes soliton bending, while lattices are used to tune
the bending rate. In contrast, the principal physical feature
behind the phenomena uncovered here is the tunability of a
symmetric nonlocality, itself. Such an aim can be achieved
in a variety of ways. In particular, it has been experimen-
tally demonstrated that the nonlocality of nematic liquid
crystals vary with the voltage applied to the crystal [21].
An increase in the voltage causes a reorientation of the
molecules of a liquid crystal, which, in turn, results in a
modification of the character of a nonlinear response from
highly nonlocal to predominantly local. Since lattices can
be imprinted in liquid crystals [10], they are very promis-
ing candidates for the demonstration of enhanced mobility
of nonlocal lattice solitons. Thus, the variation of the out-
put channel upon a slight modification of the nonlocality
degree depicted in Fig. 4 can be used to implement soliton-
based switching and routing schemes controlled by the
applied voltage. Another example of tunable nonlocality
is encountered with thermal nonlinearity, e.g., in dye-
doped liquid crystals [22].

In summary, we have addressed the properties of soli-
tons propagating in optical lattices imprinted in Kerr-type
nonlinear, nonlocal media. We revealed that the nonlocal-
ity introduces principal new effects into the soliton trans-
verse mobility. In particular, we discovered that the
Peierls-Nabarro potential barrier for solitons moving
across the lattice is drastically reduced in the presence of
the nonlocality, a result of fundamental importance be-
cause mobile lattice solitons appear to be very rare in
nature [23]. Our predictions can be directly tested with
light beams propagating in photorefractive and in liquid
crystals, but we addressed a canonical, generic nonlocal
model that provides insight for all analogous physical
settings governed by symmetric nonlocality kernels featur-
ing exponentially decaying ranges.
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