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In a magnetic field, an atom (or molecule) can attach an extra electron to form an unconventional
anionic state which has no counterparts in field-free space. Assuming the atom to be infinitely heavy, these
magnetically induced anionic states are known to constitute an infinite manifold of bound states. In reality,
the species can move and its motion across the magnetic field couples to the motion of the attached
electron. We treat this coupling, for the first time, quantum mechanically, and show that it makes the
number of bound anionic states finite. Explicit numerical quantum results are presented and discussed.
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For many decades, negative ions have remained in the
focus of intense research, both theoretical and experimen-
tal (see, e.g., [1-4], and references therein). This continu-
ous interest is due to the relevant role negative ions play in
a variety of physical and chemical processes, e.g., in stellar
and terrestrial atmospheres, in interstellar clouds, and in
plasmas [5,6]. The formation and binding mechanisms of
negative ions are of a delicate nature. Most neutral atomic
and small molecular species lead to anions with a single or
at most a few bound states. A typical example is the atomic
hydrogen anion which possesses a single valence-bound
state [7,8]. In some cases even no anionic counterparts
exist [3].

Negative ions in external fields are of particular interest.
Calculations show that when being exposed to a magnetic
field, the hydrogen anion also exhibits an excited valence-
bound state (see, e.g., [9] and references therein). Even
more intriguing is the mathematical prediction [10] that
any atomic anion possesses infinitely many bound states in
a magnetic field of arbitrary strength. This prediction has
stimulated investigations [11-14] of anions formed exclu-
sively due to the presence of a magnetic field which we
refer to as magnetically induced anions. In deriving the
mathematical prediction, it was assumed that the nuclei are
infinitely heavy [10]. Since in reality the center of mass
does not decouple from the internal motion in a magnetic
field [15,16], two major issues remain puzzling: (i) is the
number of the anionic bound states indeed infinite and
(ii) what are the actual binding energies of these states.
The first question has been answered before using argu-
ments of classical dynamics [12]. In this work we confirm
this answer and provide quantum results for the binding
energies of some experimentally relevant magnetically
induced anions.

Let us first describe the binding properties of anions in
magnetic fields assuming that the nuclei are infinitely
heavy, i.e., fixed in space. In the underlying physical
picture [4,11] an excess electron is nonvalence bound
occupying an extended orbital which is confined by the
magnetic field. The electron can only escape in the direc-
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tion along the field, which makes the problem of its binding
by the static neutral species essentially one dimensional.
The longitudinal angular momentum of the attaching elec-
tron represents an integral of motion, I, = —s, s =
0,1,2,....For each s a specific one-dimensional potential
V,(z) supports a bound longitudinal motion in a specific
quantum state. Consequently, an infinite manifold of bound
states appears. For those neutral species which do not
possess a permanent dipole moment the nature of the
potentials V(z) is a polarization attraction of the excess
electron. The corresponding binding energies were explic-
itly evaluated in [11]:

gy = 0.31x2B?, s =0,
g, = 0.12k’B382, s=12..., (1)
81 = 1? 8& = [1 - (I.S/S)]Sx_l,

where « is the polarizability of the species and B is the
magnetic field strength, both in atomic units.

Let us note that the above physical picture should be
applied with care to the magnetically induced state with
s = 0. This state typically possesses the same symmetry as
the conventional anionic state in case the latter exists.
Therefore, the s = 0 state can only manifest itself for
species which do not form stable anions without the mag-
netic field [4]. This is in agreement with the variational
calculations of the magnetically induced states formed by
the attachment of an electron or positron to a neutral
hydrogen atom [14].

The assumption that the anion is infinitely heavy turns
out, however, to be too crude when treating magnetically
induced anions. It neglects an important detachment chan-
nel—the possibility for the neutral species to move away
transverse to the field from the excess electron.
Considerations in the framework of classical dynamics
have shown that the motion of the neutral species possesses
a severe impact on the spectral and dynamical properties
and on the mere existence of the magnetically induced
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anions [12]. In the following we provide results of the
quantum treatment of the problem.

The excess electron in a magnetically induced anion is
loosely bound and occupies an extended orbital [4]. At
laboratory field strengths this orbital exceeds by orders of
magnitude the typical size of an atom or molecule. This
allows one to safely neglect pure correlations and spin-
orbit coupling of the extra electron with the electrons of the
underlying neutral system. The extra electron interacts
with a neutral species (e.g., an atom) of mass m, via a
polarizationlike attraction. For such an effective two-body
problem in a magnetic field, the collective motion along
the field as well as the motion of the guiding center of the
system in a transverse direction can be decoupled from the
other motions. In addition, the fast Larmor rotation of the
extra electron can be averaged out [12]. The remaining
three degrees of freedom relate to a one-dimensional mo-
tion of the atom relative to the decoupled guiding center
and to a two-dimensional motion of the excess electron
relative to the atom. The corresponding canonical pairs of
coordinates and momenta are {Q, P}, {g, p}, and {z, p.},
respectively. The final Hamiltonian reads [12]

H(Q,P;q, p;z p.) = H((Q, P;q, p) + Hy(Q, P;z, p,),

H\(Q,P;q, p) = %[(P +9)* +(Q + p)?l

2
p
HZ(q’ 12X8 pz) = ﬁ + Veff(zzr 7’%),

2

where () = B/my and u = mym,/(my + m,) is the re-
duced mass of the extra electron. The effective potential
V. links the excess electron to the atom and is given in
closed form in [12]. It depends on the longitudinal, z, and
transverse, r., displacements of the electronic guiding
center from the atom. The latter quantity is represented
by the operator 72 = (¢> + p?)/B. The zero energy shell,
H = 0, corresponds to the detachment threshold for the
magnetically induced states. It separates the bound states
with negative eigenvalues of the Hamiltonian (2) from the
detaching (continuum) states with positive energies.

For a moving anion, the longitudinal angular momentum
of the excess electron is no longer an integral of motion.
Instead, the total angular momentum along the field is
conserved. The corresponding operator

L=3@ P =g p) @)

has integer eigenvalues J which conveniently label the
magnetically induced states.

In the Hamiltonian (2), the degrees of freedom of the
atom and the excess electron are coupled to each other.
This results from the coupling of the internal degrees of
freedom to the collective motion of a quantum system in a
magnetic field. Although the Hamiltonian (2) with its 3
degrees of freedom has a reasonably low dimension, its
quantum treatment is nontrivial because of the dependence

of the effective potential on the momentum p which ren-
ders the potential nonlocal. For the ab initio description of
the discrete eigenstates of the Hamiltonian (2) we apply
basis functions which comprise two sets of functions:

(0, q) =i"H ;1 ,(Q)H ,(9) 4)

withn=0,1,2,...,.J=—-n—-n+1 —n+2 ...and

¢\(z) = Jaexp(—alzl)L,2alzl) (5)

with » =10,1,2,.... The functions (4) are constructed
from the eigenfunctions of a one-dimensional harmonic
oscillator,

i _exp(—=¢*/2) ’ 6
2(q) 7% H,(q) (6)

where H,, are the Hermite polynomials. In Eq. (5), L, are
the Laguerre polynomials and « is a parameter which
allows one to adjust the basis functions to the longitudinal
spatial extension of a state of interest (see below).

Let us notice a few properties which make the basis
functions introduced above convenient for calculating the
quantum states of the Hamiltonian (2). The action of the
nonlocal potential on the functions (4) can be evaluated
analytically [13] providing a diagonal matrix

(@ Ve (2, DI = V()8 @

where V(z) are the potentials mentioned above Eq. (1).
They guide the motion of the excess electron in the states
of the static, i.e., infinitely heavy, magnetically induced
anion. The functions (4) are the eigenfunctions of the total
longitudinal angular momentum, LCDEJ) = J(ID,(,J ), which
attributes the ab initio states to the quantized values of
the integral of motion (3). The functions (5) are well suited
for describing the motion of a loosely bound electron along
the magnetic field. In particular, the functions with » = 0
and with the values a, = +/2¢, for the parameter & mimic
the wave functions of the magnetically induced states of
the infinitely heavy anion.

The sets of basis functions (4) and (5) are orthonormal
and complete. Applying them reduces the search of the
discrete eigenstates of the Hamiltonian (2) to a standard
eigenvalue problem for the real symmetric matrix com-
posed of the elements (n'v'|H|nv). In our calculations, we
have extended the number of basis states until convergence
of an eigenenergy of interest is achieved. As the basis
functions are L2 functions, we can only study the bound
states of the Hamiltonian (2).

As a first application of our approach, we have studied
the magnetically induced anionic states of noble gas atoms
and of other related atoms. Because of their electronic
structure, these atoms are known to be unable to form
stable anions in field-free space and are good candidates
to provide s = 0 magnetically induced states.
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Diagonalizing the matrix form of the Hamiltonian (2),
we have numerically obtained the negative eigenergies for
different values of J which enumerate the motional ground
and excited states of the anion. We have found the excita-
tions to form a few branches. Their number depends on the
magnetic field strength. In some situations only a single
branch of bound states exists or even none. In order to
connect the results to the case of the infinitely heavy
anions, we enumerate these branches by s =0, 1,2,....
The numbers s and J label the quantum energies, E,;, of
the moving magnetically induced anions. For the infinitely
heavy anions, these energies become independent on J and
correspond to the binding energies (1), E;; — —¢&,. This
can be readily revealed from the limit m, — oo equiva-
lently ) — O for the Hamiltonian (2). When calculating
the states associated with an s branch, we were adjusting
the spatial extensions of the functions (5) by selecting & =
a,. Although these functions form a complete set for any
value of «, such “optimal” values were found to provide
the desired numerical accuracy of the energies E,; at the
minimum number of basis functions used.

In Fig. 1 we present the branches of the motional mag-
netically induced states of atomic anions which do not exist
in field-free space. Two values of the magnetic field
strength, B= 10T and B = 100 T, are selected. For a
branch s, the quantum number J can vary as J = —s, —s +
1, —s + 2,.... Because of the significant differences of the
binding energies of the anions, it is convenient to plot the
ratios E,; /e, against the values (/e,)(J + s). The ener-
gies of the bound states grow with J which reflects the
increasing energies of Larmor-like rotations of the anions
bound in the magnetic field. As a result, increasing J finally
turns the bound states into autodetaching states with posi-
tive energies.

For the branches shown in Fig. 1, the dependencies of
the anionic energies on J are almost linear and fairly well
approximated by a simple formula

ESJ = (mat/Meff)[_as + Q(J + S)] (8)

with a single fit parameter M ;. This parameter has a
meaning of an effective mass of the bound anion and was
found to be different for different s branches of the mo-
tional states. It depends on the properties of the neutral
species (mass and polarizability) as well as on the magnetic
field strength.

At a typical strong laboratory magnetic field strength of
10 T, all studied atoms but one exhibit a single branch (s =
0) of magnetically induced anionic states. The exception is
the lightest He atom which is found not to possess a bound
state. This atom has also the smallest polarizability which
turns out to be insufficient to support a bound anionic state
at this magnetic field strength. This example clearly dem-
onstrates the effects of finite atomic mass. For all the other
atoms studied in Fig. 1 there exist bound states with
energies Ey; = —gy + 0J < 0. These represent the mo-

s=1, B=100T:

: Ar (119)
Be (312)
Xe (2368)

Mg (3012) 1
Hg (7186)

1 1 1 1

0.4 0.6 0.8 1.0
(Q/es) (J+s)

FIG. 1. Energies of the motional magnetically induced anions
formed by atoms which do not form anions in field-free space.
Dashed lines show the s = 0 branches of excitations for B =
10 T. Dots show the quantum levels with s = 1 and different
values of J for B = 100 T, and are connected by solid lines for
visualization of the analytical approximation (8). Also indicated
in the figure are the numbers of the bound motional states along
the branches (in parentheses) and the effective anionic masses
(near the solid and dashed lines).

tional excitations of the s = 0 state of the infinitely heavy
anions. The higher s states are completely destroyed by the
motional effects. It is worthy to notice the quite significant
(although finite) number of motional excitations in the s =
0 branch and that this number strongly depends on the
atom and on the field strength. Also note that the effective
masses of the anions practically coincide (for s = 0) with
the masses of the corresponding neutral atoms.

At a significantly higher field strength of 100 T, we
encounter for the three atoms, Xe, Mg, and Hg, in addition
to the s = 0 branch the appearance of the s = 1 branch of
magnetically induced states. The number of bound mo-
tional states in this branch is rather small: 4, 6, and 12, for
Xe, Mg, and Hg, respectively. Here, the bound Xe™ anion
displays the biggest ratio, = 1.74, of the effective mass
M 4 to the mass of the neutral atom. This anion also shows
the largest relative deviation of the binding energy of the
s =1, J = —1 state from the corresponding binding en-
ergy €; of the infinitely heavy anion.

For infinite nuclear mass an infinite manifold of bound
states was predicted in [10] to exist for arbitrarily small
magnetic field strength. In reality, states can only be bound
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FIG. 2. The energy of the lowest bound state of the anion He™,
ie.,s=0,J=0,and of the state s = 1,/ = —1 of Mg™, as a
function of the magnetic field strength (solid lines). Dashed lines
show the corresponding energies of the infinitely heavy anions.
Dots correspond to polynomial extrapolations of the solid lines
towards the detachment threshold (zero energy). Arrows point to
the minimum values of the field strength (indicated near the
arrows) required to support a bound state.

for field strengths exceeding some critical values that
depend on the species considered. This is demonstrated
in Fig. 2 in terms of the energies of states with s = O for the
anion He™ and with s = 1 for the anion Mg™. The energies
are shown as functions of the field strength and compared
with the corresponding energies of the infinitely heavy
anions. Due to the effects of finite atomic masses, the
lowest bound state of He™ appears at B> 17.2 T, and
the lowest bound s = 1 state of Mg~ is supported at B >
48.2 T. Interestingly, these critical fields are close to the
values previously indicated in [12] on the grounds of
simple energetic arguments. At all field strengths higher
than these critical values, the binding energies of the mo-
tional states are substantially smaller than those of the
infinitely heavy anions.

To conclude, we have demonstrated that accounting for
the quantum effects of the finite anionic mass has a dra-
matic impact on the manifold of the magnetically induced
bound states: the majority of the infinite sequence of the
states (1) become unbound, while each of the remaining
bound states splits into a finite series of quantum motional
excitations. For the anions of the noble gas atoms at la-
boratory field strengths, basically only the lowest s = 0
magnetically induced state survives and is transformed into

a sequence of motionally excited states. Further studies
which we expect to bring new fundamental knowledge on
properties of quantum states of magnetically induced
anions should concern autodetaching states. The J series
shown in Fig. 1 terminate at E,; = 0, but can be thought of
to continue into the range of positive energies where
instead of bound states one may find metastable states. It
is also very challenging to investigate anions formed by
different interaction mechanisms with an excess electron.
Relevant examples are small clusters or dipolar molecules
where one could discover magnetically induced anionic
states of species which do not form stable anions without
the magnetic field.

Financial support by the Deutsche Forschungemein-
schaft is gratefully acknowledged.

*Permanent address: Department of  Theoretical
Astrophysics, loffe Physical-Technical Institute, 194021
St.-Petersburg, Russia

[1] H. Massey, Negative lons (Cambridge University Press,
London, 1976).

[2] M.K. Scheller, R.N. Compton, and L.S. Cederbaum,
Science 270, 1160 (1995).

[3] T. Andersen, H. K. Haugen, and H. Hotop, J. Phys. Chem.
Ref. Data 28, 1511 (1999).

[4] V.G. Bezchastnov, P. Schmelcher, and L.S. Cederbaum,
Phys. Chem. Chem. Phys. 5, 4981 (2003).

[5] D. Gray, The Observation and Analysis of Stellar
Photospheres (Cambridge University Press, Cambridge,
1992).

[6] A. Chutjian, A. Garscadden, and J. M. Wadehra, Phys.
Rep. 264, 393 (1996).

[7] C.L. Pekkeris, Phys. Rev. 126, 1470 (1962).

[8] K.R. Lykke, K. K. Murray, and W.C. Lineberger, Phys.
Rev. A 43, 6104 (1991).

[9] O.-A. Al-Hujaj and P. Schmelcher, Phys. Rev. A 61,
063413 (2000).

[10] J.E. Avron, I. W. Herbst, and B. Simon, Commun. Math.
Phys. 79, 529 (1981).

[11] V.G. Bezchastnov, P. Schmelcher, and L. S. Cederbaum,
Phys. Rev. A 61, 052512 (2000).

[12] V.G. Bezchastnov, L.S. Cederbaum, and P. Schmelcher,
Phys. Rev. Lett. 86, 5450 (2001); Phys. Rev. A 65, 032501
(2002); 65, 042512 (2002).

[13] V.G. Bezchastnov and L. S. Cederbaum, Phys. Rev. A 68,
012501 (2003).

[14] D.H.E. Dubin, Phys. Rev. Lett. 92, 195002 (2004); Phys.
Rev. A 71, 022504 (2005).

[15] B.R. Johnson, J.O. Hirschfelder, and K.H. Yang, Rev.
Mod. Phys. 55, 109 (1983).

[16] P. Schmelcher and L. S. Cederbaum, Phys. Rev. A 43, 287
(1991).

113002-4



