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Local Existence of Dynamical and Trapping Horizons

Lars Andersson*
Albert Einstein Institute, Am Mühlenberg 1, D-14476 Potsdam, Germany,

and Department of Mathematics, University of Miami, Coral Gables, Florida 33124, USA

Marc Mars† and Walter Simon‡

Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca, Spain
(Received 9 June 2005; published 9 September 2005)
0031-9007=
Given a spacelike foliation of a spacetime and a marginally outer trapped surface S on some initial leaf,
we prove that under a suitable stability condition S is contained in a ‘‘horizon,’’ i.e., a smooth 3-surface
foliated by marginally outer trapped slices which lie in the leaves of the given foliation. We also show that
under rather weak energy conditions this horizon must be either achronal or spacelike everywhere.
Furthermore, we discuss the relation between ‘‘bounding’’ and ‘‘stability’’ properties of marginally outer
trapped surfaces.
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The application of numerical relativity to black hole
spacetimes is, together with the role played by black hole
thermodynamics as a testing ground for quantum gravity,
among the factors that have caused a shift of interest from
global properties of black holes such as the event horizon,
knowledge of which requires information about the infinite
future, towards quasilocal properties. By quasilocal prop-
erties one means such properties that can at least in prin-
ciple be measured by an observer with a finite life span and
hence also can be studied during the course of a numerical
evolution of a black hole spacetime.

A closed spacelike surface S in a spacetime (M;g��) is
called trapped if future directed null rays emanating from S
are converging. If M contains a trapped surface and sat-
isfies the null energy condition and a suitable causality
condition, then M is singular [1]. Suppose M is foliated by
a family of spacelike Cauchy surfaces f�tg. The apparent
horizon, defined as the family of boundaries of the regions
containing trapped surfaces in the f�tg, is a quasilocally
defined object that plays an important role in black hole
thermodynamics as well as in numerical evolutions of
black holes. It should be noted, however, that the apparent
horizon depends on the choice of the reference foliation
f�tg. If sufficiently smooth, the apparent horizon is foliated
by marginally outer trapped surfaces (MOTSs) [2]. The
latter are defined to have vanishing outgoing null expan-
sion (while the ingoing one is not restricted).

In numerical evolution of black hole spacetimes, it is
now standard to avoid the singular behavior of both gravi-
tational field and gauge conditions in the interior of black
holes, by excising a suitable region inside the boundary of
the black holes, as defined by a collection of MOTSs, from
the computational domain. However, tracking a family of
MOTSs during an evolution one encounters the occasional
‘‘sudden’’ appearance of new MOTSs and ‘‘jumps’’ of the
MOTSs (see, e.g., [3]). It thus becomes important to study
such an evolution analytically as far as possible. In this
Letter, we prove in Theorem 1 existence of a horizon, i.e., a
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hypersurface foliated by MOTSs, provided the initial sur-
face S satisfies a natural stability condition, and in
Theorem 2 we give causal properties of H. The condition
of ‘‘strictly stably outermost,’’ which is crucial for these
results, means that there is an outward deformation of S
such that the corresponding variation of the outgoing null
expansion is non-negative and positive somewhere (see
Definition 2 for details).

Theorem 1: Let �M;g��� be a smooth spacetime foli-
ated by smooth spacelike hypersurfaces �t . Assume that
some leaf � � �0 contains a smooth marginally outer
trapped surface S which is strictly stably outermost.
Then, S is part of a smooth horizon H, whose marginally
outer trapped leaves lie in �t and which exists at least as
long as these marginally trapped leaves remain strictly
stably outermost.

In Theorem 2 below we use the same notation as in
Theorem 1, and we denote by l� the null vector for which
the expansion �l vanishes on S. Recall that the null energy
condition holds if G��j

�j� � 0 for any null vector j�,
where G�� is the Einstein tensor.

Theorem 2: If, in addition to the hypotheses of
Theorem 1, the null energy condition holds, the horizon
H is locally achronal. If, moreover, G��l�l� > 0 some-
where on S or if S has nonvanishing shear with respect to
l� somewhere, then H is spacelike everywhere near �.

The term horizon in this Letter is closely related to
dynamical horizons introduced by Ashtekar and Krishnan
[4] and to outer trapping horizons introduced by Hayward
[5]. The latter two differ from ours first because they
impose additional restrictions on the expansion �k along
the other future null direction k. Moreover, while dynami-
cal horizons are spacelike by definition, outer trapping
horizons may have any causal character a priori, but they
are required to satisfy an additional stability condition,
namely, that the variation of �l along k is negative. Our
condition of strictly stably outermost can be generalized
to variations in the outward past null cone C� of S.
2-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.111102


FIG. 1. A horizon.

PRL 95, 111102 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
9 SEPTEMBER 2005
Hayward’s stability condition is then closely related to our
stability condition along null directions. Most of the results
stated in this Letter, in particular, the existence theorem,
extend to the null case. Details will be given elsewhere [6].

Since the location in spacetime of apparent, dynamical,
and trapping horizons depends in general on the foliation
�t, it is clear that the same applies to the horizons obtained
above. However, for generic dynamical horizons, this de-
pendence is limited by the uniqueness results of Ashtekar
and Galloway [7]. We also note that the result in Theorem 2
on the causal character ofH is stronger than the one known
[5] for trapping horizons.

The example illustrated in Fig. 1 will shed light on the
possible behavior of our horizons. It shows a horizon (thick
line) in a spacetime foliated by spacelike hypersurfaces �t
(thin lines). The horizon separates a region in which the �t
contain outer trapped surfaces (which we call the ‘‘trapped
region,’’ shaded in Fig. 1) from a region where the �t are
free of them; the intersection ‘‘points’’ with the foliation
are MOTSs. Note that Fig. 1 incorporates naturally the
observed sudden appearance of MOTSs during the evolu-
tion (e.g., point e). If the numerical analysis looks for
globally outermost MOTSs only (as it is usually done), it
is clear that they jump (e.g., from b to e), while they are in
fact connected by a horizon interpolating between both
which ‘‘runs downward’’ in some places [in the interval (d,
e)]. Thus Fig. 1 makes compatible a smooth horizon with
the jumps observed numerically. Examples such as Fig. 1
can, in particular, be constructed in spherically symmetric
spacetimes by choosing the spacelike foliation �t suitably.
Thus one may expect that the situation described by Fig. 1
is typical, though the causal character of the ‘‘downward’’
part of the horizon is yet unclear; see the discussion in [7].

We now introduce some notation needed for the precise
statements of our results. All fields and manifolds will be
assumed to be C1 unless otherwise stated. Let �M;g��� be
a spacetime with signature ���� . Given a spacelike
surface S in M we may choose two future directed null
fields l�; k�. Recall that the variation �p� of the geometric
object � defined on a surface T in the direction of the vector
p� is defined by �p� � @�=@� for any one-parameter
family of surfaces T� with T0 � T and p�@x� �
@=@�j��0. The null expansion �l is defined by ��l �
�l�, where � is the volume form on S. It should be noted
that the variation is additive in the sense that, for example,
� k�l�l � � k�l � �l�l, for some function  , but in gen-
eral � k�l �  �k�l.

A closed spacelike surface S is called outer trapped
(weakly outer trapped, marginally outer trapped) if one
of the null expansions, say, �l, is negative (nonpositive,
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zero) everywhere on S. (For alternative terminology, cf.
[8]). The usual definition of ‘‘trapped surface’’ and ‘‘mar-
ginally trapped surface’’ requires additional conditions on
the expansion with respect to the other null vector k�.
Corresponding definitions for untrapped surfaces are
made by reversing the signs. Let a reference foliation
f�tg of M by spacelike hypersurfaces be given, and select
one such surface � � �0. For a MOTS S � �, we define
the ‘‘outward’’ direction within � as the one to which the
projection to � of the null vector l� selected above points.
This definition of outward need not coincide with the
intuitive one in asymptotically flat spacetimes. However,
all our results hold for arbitrary spacetimes (not necessarily
asymptotically flat) and l� defines a local concept of out-
ward for MOTSs. The unit outward normal to S tangent to
�t is called m�, the future pointing unit normal to �t is n�,
and we scale the null vectors l� and k� such that l� �
n� �m� and k� � n� �m�.

The following definitions are, apart from later use, mo-
tivated by similar definitions of Newman [9] and of Kriele
and Hayward [2], and by results in these papers.

Definition 1: A marginally outer trapped surface S is
called ‘‘locally outermost’’ in � iff there exists a two-sided
neighborhood U of S such that the exterior part of U does
not contain any weakly outer trapped surface.

Definition 2: A marginally outer trapped surface S is
called ‘‘stably outermost’’ iff there exists a function
 � 0,  6�0, on S such that � m�l � 0. S is called
‘‘strictly stably outermost’’ if, moreover, � m�l � 0 some-
where on S.

In Fig. 1, the points in the interval 	a; d
 represent stably
outermost surfaces, those in 	a; c� locally outermost ones,
and those in �a; c� strictly stably outermost ones. This
example and the result in [2] suggest the implications
that strictly stably outermost) locally outermost) stably
outermost, and the picture also suggests counterexamples
for the opposite directions. We now give the tools required
to show these results and the theorems.

For a function  on S, we define a linear elliptic operator
L� by L� � � m�l. Explicitly, we obtain
L� ���S �2sADA �
�
1

2
RS�sAs

A�DAs
A�

1

2
K�
ABK

�ABl�l��G��l
�n�

�
 : (1)

Here DA is the covariant derivative on S, �S is the corresponding Laplacian, RS is the scalar curvature, K�
AB is the second

fundamental form vector [defined by K�
ABv� � �rAvB for any normal v� to S, where r� is the covariant derivative on
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(M;g��)], and sA is the torsion of l� (the 1-form sA �
� 1

2 k�rAl
� on S).

L� is analogous to the stability operator for minimal
surfaces. In general, L� is not self-adjoint but the eigen-
values of L� have their real part bounded from below. The
eigenvalue with the smallest real part is called the principal
eigenvalue. The following holds for second order elliptic
operators of the form of L�.

Lemma 1: The principal eigenvalue � of L� is real.
Moreover, the corresponding principal eigenfunction 	
(which satisfies L�	 � �	) is either everywhere positive
or everywhere negative.

This Lemma is a consequence of the Krein-Rutman
theorem which can be applied to second order elliptic
operators along the lines in corollary A3 of Smoller [10].
The discussion in Smoller’s corollary can be adapted
straightforwardly to the case without boundary.

We now restate Definition 2 in terms of � as follows.
Lemma 2: Let S � � be a MOTS and let � be the

principal eigenvalue of the corresponding operator L�.
Then S is stably outermost iff � � 0 and strictly stably
outermost iff � > 0.

Proof. If � � 0, choose  in the definition of (strictly)
stably outermost as a positive eigenfunction 	 correspond-
ing to �. Then �	m�l � L�	 � �	 � 0. For the con-
verse, we note that the adjoint L�� (with respect to the
standard L2 inner product h; i on S) has the same principal
eigenvalue as L�, and a positive principal eigenfunction
	�. Thus, for  as in the definition of (strictly) stably
outermost,

�h	�;  i � hL��	
�;  i � h	�; L� i � 0;

with strict inequality in the strictly stable case. Since
h	�;  i> 0, the Lemma follows. �

Proposition 1.
(i) A strictly stably outermost surface S is locally outer-

most. Moreover, S has a two-sided neighborhood U such
that no weakly outer trapped surfaces contained in U enter
the exterior of S and no weakly outer untrapped surfaces
contained in U enter the interior of S.

(ii) A locally outermost surface S is stably outermost.
Proof. The first statement of (i) is in fact contained in the

second one. To show the latter, let 	 be the positive
principal eigenfunction of L�. Since L�	> 0 by assump-
tion, flowing S in � along any extension of 	m� produces
a family S
, 
 2 ���; �� for some � > 0. By choosing �
small enough, the S
 have �ljS
 > 0 for 
 2 ���; 0� and
�ljS
 < 0 for 
 2 �0; ��. We can now take U to be the
neighborhood of S given by U � [
2���;��S
.

Now let B be a weakly outer trapped surface contained
in U which enters the exterior part ofU. Then, the function

 has a maximum 
p > 0 at some point p in B. At p, B is
tangent to S
p and we have

�ljB � 0< �ljS
p : (2)
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For a surface represented as a graph with respect to a
function f, the map f ! �l is a quasilinear elliptic operator
and the strong maximum principle [11] applies to show
that the inequality (2) holds only if B coincides with S
p
and hence �ljB � �ljS
p , which gives a contradiction.

Hence B cannot enter the exterior part of U. A similar
argument applies in the untrapped case.

To show (ii), assume S is locally outermost but not stably
outermost. From Lemma 2, the principal eigenvalue � is
then negative. Arguing as above, one constructs a foliation
outside S with leaves which are outer trapped near S,
contradicting the assumption. �

Theorem 5.1 of Ashtekar and Galloway [7] implies that
the domain exterior to S to which outer trapped surfaces
cannot enter is determined by the past domain of depen-
dence of any dynamical horizon through S, provided that
some genericity conditions hold. Outer trapped surfaces
‘‘far outside’’ of a locally outermost MOTS might exist in
general [as Fig. 1 suggests for the surfaces in the interval
�b; c�]. To exclude this, one could define ‘‘globally outer-
most’’ surfaces (in particular, in an asymptotically flat
context). We can now prove our main theorem.

Proof of Theorem 1. Consider a foliation �t with a
MOTS S on � � �0. Let C� be the null cone generated
by null rays starting from S in the direction of l� and let
~St � C� \ �t for t close to 0. We now introduce coordi-
nates �t; r; xA� adapted to ~St in a neighborhood of S such
that at S, @r is the normal m� and @t is parallel to l�.

On �t we consider surfaces which are given as graphs
r � f�xA� in this coordinate system and we define a func-
tional �	t; f
, whose value is �l on the surface and which
acts on f as a quasilinear elliptic operator of the form
�	t; f
 � aAB�f; @f�@A@Bf� b�f; @f�, where the coeffi-
cients aAB and b are smooth functions depending on x and
on t, f, and @Af. For integer k � 0, � 2 �0; 1�, let Ck;� be
Hölder spaces on S. Let I � ���; �� for � > 0. One checks
that for some � > 0 and for any k � 2, there are neighbor-
hoods U1 and U2 of zero in Ck;� and Ck�2;�, respectively,
so that �	t; f
 : I U1 !U2 is a well-defined C1 map.
Let Dy� be the derivative with respect to the second
argument. Then we have, from the definition of �,
Dy�	0; 0
:� � L��: As S is assumed to be strictly stably
outermost, the principal eigenvalue of L� is positive by
Lemma 2. By the Fredholm alternative L� is invertible as a
map L� : Ck;� ! Ck�2;� for arbitrary k � 2, � 2 �0; 1�.
Now the implicit function theorem for Banach space maps
[12] applies to prove local existence of a smooth horizonH
which by construction has the property that the leaves St �
H \ �t near S are MOTS. By patching charts together it is
also clear that existence holds as long as the St stay strictly
stably outermost.

A theorem of Schoen [13] asserts the existence of a
MOTS between barrier surfaces S1; S2 with S1 trapped
and S2 untrapped if the dominant energy condition holds.
Besides its clear interest, this result also suggests an alter-
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native approach to existence of a horizon: Start from a
weakly outer trapped surface S on some initial slice and
take the null cone emanating from it. By the Raychaudhuri
equation, �!l�l � �!W for any function ! and W �
K�
ABK

�ABl�l� �G��l
�l�. If W > 0, the null cone cuts

each subsequent slice on an outer trapped surface which
gives the trapped barrier S1, while an untrapped barrier S2

always exists near infinity for asymptotically flat data.
Schoen’s result then yields existence of a MOTS on every
subsequent slice. The resulting ‘‘horizon’’ may in general
jump (e.g., from b to e in Fig. 1), but it need not be
outermost. On the other hand, our Theorem 1 requires a
MOTS on the initial surface instead of just a trapped one,
but we do not assume any asymptotic properties, and we
obtain a smooth horizon.

Results on the causal character of the horizon can be
obtained by combining again the Raychaudhuri equation
on the null cone as sketched above with a maximum
principle or a ‘‘barrier argument’’ inside �t for t near �0.
For the latter, we may use, e.g., part (i) of Proposition 1.
However, we can also do ‘‘both steps at once’’ by using the
following Lemma.

Lemma 3: For a strictly stably outermost surface S, any
normal variation  m� of S with � m�l � 0 satisfies
 � 0; i.e., the variation cannot be directed to the interior
anywhere on S. If, moreover, � m�l � 0 somewhere then
 > 0; i.e., the variation is directed to the exterior every-
where on S.

Proof. Let 	 be a positive principal eigenfunction of L�

and define � by  � �	. A computation shows that

L� � �L�	�	�S�� 2�	sA �DA	�DA�:

Since S is strictly stably outermost, L�	> 0 and the
strong maximum principle [11] yields that � � 0 if L� �
0, with strict inequality if L� � 0 somewhere.

We can now prove Theorem 2.
Proof of Theorem 2. By construction, the variation of �l

vanishes along the vector q�@x� � @t ��@r � !l��m
tangent to H, where !> 0 is defined by @t � !l.
Therefore,

0 � �q�l � �!l��m�l � �!W � L��:

If the null energy condition holds, W is non-negative and
under the condition in the second part of Theorem 2 W is
even positive somewhere. By Lemma 3 it follows that
� � 0 in the first case and�> 0 everywhere in the second
one, which proves the assertions.

Assume that a 2-surface S is strictly stably outermost
and that the dominant energy condition is satisfied (i.e.,
that �G�

�u
� is future directed for all future directed time-

like vectors u�). Then S is topologically S2 (and hence the
horizon through S is S2  R). We recall here Hawking’s
argument [14]. Denoting by	 the positive principal eigen-
function of L�, the stability condition implies that 0<
11110
R
S 	

�1L�	. Then the result follows from (1) after inte-
grating by parts and using the Gauss-Bonnet theorem.

While we have restricted ourselves to local results in this
Letter, it would clearly be desirable to determine the global
evolution of the horizon in a given black hole spacetime. It
would be much more ambitious to look at the global
Cauchy evolution for asymptotically flat initial data with
a MOTS. In vacuum, one expects this evolution to ap-
proach a Kerr spacetime and our horizon to approach the
event horizon. Moreover, the area of the marginally
trapped slices should approach a quantity not greater than
16m2, where m is the mass of the final Kerr black hole.
This version of the Penrose inequality [15] would involve
the area of the MOTS instead of a minimal surface, and one
could, for axially symmetric data, include angular momen-
tum as well [4].
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