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Dynamic Projection on Feshbach Molecules: A Probe of Pairing and Phase Fluctuations
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We describe and justify a simple model for the dynamics associated with rapid sweeps across a
Feshbach resonance, from the atomic to the molecular side, in an ultracold Fermi system. The model
allows us to relate the observed molecule momentum distribution to equilibrium properties of the initial
state. In particular, the dependence of the total molecule number on the sweep rate is found to be a
sensitive probe of pairing in the initial state, whether condensed or not. This can be used to establish the
presence of a phase fluctuation induced ‘‘pseudogap’’ phase in these systems.
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Experiments with ultracold fermions near a Feshbach
resonance (FR) opened a new window to the study of
strongly interacting condensates [1–3]. They can access
the strongly coupled regime intermediate between weak
pairing BCS superfluidity and Bose Einstein condensation
(BEC) of molecules, where deviations from mean field
theory [4–6] are expected to be large. In addition, the
ability to rapidly vary the interaction parameters provides
a unique opportunity to study quantum dynamics far from
equilibrium [7]. The focus of recent experiments has been
to utilize rapid magnetic field sweeps across the FR, in
order to probe equilibrium properties of the condensate in
the crossover region [2,3]. The idea was to convert Cooper
pairs in the initial state, which would otherwise unbind
during free expansion, into molecules. The fact that the
molecule momentum distribution depended on the start
position has been offered as strong indication that indeed
properties of the initial equilibrium state were being ac-
cessed. However, precise connections to such properties
are lacking.

In this Letter we formulate an approach that allows us to
relate equilibrium properties of such strongly interacting
fermions to measurements in the dynamical experiments.
Our approach targets the regime of ‘‘fast’’ magnetic field
sweeps. Roughly, this is when the conversion efficiency of
atoms into molecules changes significantly with ramp rate.
Empirically in the 40K system this implies a ramp rate
faster than 1=20 G=�s [2], while it was too fast to be
accessed in 6Li [3]. The physics in this regime turns out
to have a remarkable simplicity.

Consider for a moment the extreme limit of an infinitely
fast sweep. Then, we can apply the sudden approximation
and simply use the initial state to evaluate the final popu-
lation of molecules. This picture was advocated by Regal
et al. [2] (see also [8]). Subsequent theoretical studies [9]
used the same assumption to estimate the fraction of con-
densed molecules as a function of the detuning of the initial
state from resonance. The molecule momentum distribu-
tion in this approach is given by
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where ’f�k� is the molecular wave function (WF) at the
end of the ramp, deep in the molecular side of the reso-
nance. The average h� � �ii is taken over the initial state,
which in Ref. [9] was assumed to be a BCS WF [5]. This
gives a bimodal momentum distribution, with a peak at
q � 0 due to Cooper pairs projected to molecules, as well
as molecules at q � 0 due to pairwise projection of atoms
belonging to different Cooper pairs. Although this is
roughly what is seen in the experiments, it is unsatisfactory
in two important respects. (i) Mean field theory is used to
calculate the initial state, although in the crossover regime
fluctuations are expected to play an important role. (ii) The
approach ignores the dynamical aspects of the experiment
and is by definition unable to predict the dependence of
measured quantities (e.g., conversion efficiency and mo-
lecular condensate fraction) on ramp rate.

Both of these issues are addressed in this Letter. (i) We
go beyond mean field theory, using RPA [10] to include
Gaussian phase fluctuations (or ‘‘noncondensed Cooper
pairs’’). In the BCS to BEC crossover regime, these sharply
reduce the observed condensate fraction relative to the
mean field result of Ref. [9], even at zero temperature.
For fast sweeps at low temperature this leads us to predict a
surprising nonmonotonic behavior of the molecule con-
densate fraction versus detuning of the initial state from
resonance. Point (ii) raised above is addressed by an effec-
tive model for the dynamics. For fast sweeps we argue that
the time evolution of the system can be approximated by a
‘‘sudden’’ part followed by an ‘‘adiabatic’’ time evolution
part. The point at which the time evolution changes char-
acter depends on the ramp rate, the sudden evolution
persisting to larger detuning at higher ramp rates. So, we
will be using Eq. (1), but with the effective molecular WF,
’ that depends on the ramp rate. In this way we are able to
obtain the parametric dependence of various measured
quantities, such as conversion efficiency into molecules
and molecular condensate fraction on the ramp rate, and
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FIG. 1. Model dynamics. Field sweep is effectively sudden up
to detuning �� depending on the sweep rate _�. At this point the
scattering length (and molecule size) is a�. The molecule is
assumed to evolve adiabatically from there.
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the parameters of the initial state. At these fast sweep rates,
we find that the conversion of Cooper pairs into molecules
is vastly more efficient than that of uncorrelated pairs of
atoms. This applies both to condensed and noncondensed
Cooper pairs, and ultimately results from a short distance
singularity present in the Cooper pair WF, which allows
them to have a non-negligible overlap even with small
sized molecules. Since these dynamical measurements
are equally sensitive to noncondensed Cooper pairs, they
can potentially probe the phase fluctuation induced pseu-
dogap phase (where thermal and quantum phase fluctua-
tions destroy the condensate but pairing remains). Details
such as the momentum distribution of noncondensed pairs
may also be accessed.

We now motivate the model dynamics via physical
arguments and derive the consequences for the system of
interest. Later we perform a nontrivial check by showing
that this simple scheme indeed reproduces the physics in a
nontrivial toy model (the Dicke model) which is solved
numerically without approximations. In what follows we
concentrate on a wide FR, relevant to experiments in 40K

[2] and 7Li [3]. That is, gs � g
��������
n=2
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coupling between the open and closed channels and n is the
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where we set @ � 1 throughout. Ultraviolet divergences are
avoided in the standard fashion by writing all physical
results in terms of an s-wave scattering length a instead
of u. Near resonance the scattering length diverges as a 	
�mg2=4��, where m is the atomic mass and � is the
detuning in energy units, which is related to the magnetic
detuning via the magnetic moment difference �� between
closed and open channels: � � ���B� B0�.

Our two stage approximation of the dynamics is de-
picted graphically in Fig. 1. For slow sweeps, atoms are
converted adiabatically to weakly bound Feshbach mole-
cules (FMs) [11]. The binding energy of these molecules is
Eb � �1=�ma2� / �2 (for kfa
 1). Now consider a
change in the detuning parameter at a constant rate _�.
Once the binding energy is large enough, such that _Eb 

E2
b, the time evolution is expected to be adiabatic. So, for a

given sweep rate _�, there is a characteristic detuning ��,
which marks a dynamic crossover for the system. At ��,
_Eb 	 E2

b [12]. Our simplified two stage model for the
dynamics approximates the change up to �� as sudden,
while the rest is considered as perfectly adiabatic. Thus the
WF at the initial state is effectively ‘‘projected’’ on FMs
that occur at detuning ��. These molecules evolve adiabati-
cally into more tightly bound ones corresponding to the
final value of the field, while the rest of the atomic popu-
lation remains unbound.
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Within this model, a faster sweep rate simply moves the
break point �� to larger negative detuning, leading to
effective projection of the initial WF on smaller FMs. We
can establish a precise connection between the sweep rate
and the size of the effective molecule WF. The typical size
of the FM at �� is the scattering length a�����. Using Eb �
�1=�ma2� and the relation between the scattering length
and the detuning � quoted earlier, with the break condition
E2
b�a�� � dEb�a��=dt, we obtain

kfa� � �3�g
2
s=4 _��1=3: (3)

This result is valid if the effective projection takes place in
the regime kfabg 
 kfa� 
 1, where abg is the back-
ground scattering length far from resonance. If the sweep
rate is too slow, the effective projection would occur in the
strongly interacting regime, while for excessively fast
sweep rate, one would have to consider occupation of the
closed channel in the final state.

To determine the final molecule distribution within the
two stage model, we need to calculate the following corre-
lation function, in the initial state:
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The size of the molecular pair WF ’k is a�, as prescribed
by the model dynamics. First consider the mean field
(BCS) approximation of the initial state. In this case, (4)
may be factorized (as in Ref. [9]) to obtain
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The first contribution gives the condensed part of the
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FIG. 2. Calculated molecule condensate fraction versus
�1=kfa in the initial state (bottom axis), and versus magnetic
field detuning for parameters of 40K [2] (top axis). The sweep
rate corresponds to kfa� � 0:3. Solid lines include the effect of
quantum and thermal phase fluctuations. Dashed line shows the
T � 0 mean field theory (MFT) result for comparison.
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distribution. In fact, this is just the square of the overlap
between the final molecule WF and the ‘‘Cooper pair WF.’’
The second term, containing the normal expectation val-
ues, gives the noncondensed part of the distribution. To
make further progress, we note that if the molecule size a�
is much smaller than the interparticle spacing, we can
replace the exact WF with a box WF in momentum space
of the same spatial extent. We take ’k �

������������
3=4�

p
a3=2
� for

k < 1=a� and ’k � 0 outside this sphere. Now ’k serves
as a cutoff to the relative momentum integrals. Using this
in (5), the number of normal molecules is found to beNn �
�N=2��kfa��

3, where N is the total atom number. This
result is easily understood in terms of the overlap of a
random pair of atoms in the Fermi sea, with a molecular
WF. The conversion efficiency is then proportional to the
ratio of the molecule volume to that occupied on average
by nearby atoms. In contrast, the number of condensed
molecules calculated from (5) is
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The last step relies on the high momentum divergence of
the integral, due to which it depends crucially on the high
momentum cutoff. The result (6) will have important con-
sequences on interpretation of experiments, and it is worth-
while to remark on its physical origin. The number of
condensed molecules is proportional to the square of the
overlap of the molecular WF ’ with the Cooper pair WF
’c. The molecule WF is appreciable only within a region
r < a�, where ’�r� � a�3=2

� . Thus, it probes the Cooper
pair WF at very short distances, much smaller than the
interparticle spacing, where ’c�r� / 1=r. Therefore
jh’j’cij2 / a�, which is a much larger overlap than might
be naively expected. Note that, in solid state systems where
a natural short distance cutoff exists, these features are
absent and hence have not been emphasized.

Combining the mean field results, we can obtain the
condensate fraction N0=Nn in the molecule distribution:
fMF � 1� 4=9��f=��2�kfa��

2��1. It decreases exponen-
tially for large positive initial detuning because �=�f �
e�1=kfa. Close to resonance, on the other hand, �� �f, so
for sufficiently fast sweep rates (kfa� 
 1), fMF � 1. This
is because Cooper pairs are converted into molecules more
efficiently, and within the mean field approximation all of
them are condensed. However, in the same region, close to
the resonance, we expect phase fluctuations to be important
(Cooper pairs at finite momenta), which will lead to f < 1.

To obtain such corrections to the mean field result (5),
we calculate the correlation function (4) within RPA. The
details of the calculation are left to [12]; here we briefly
outline the main steps and the results. Following Ref. [10],
we consider a path integral representation of the partition
function Z determined by the Hamiltonian (2). The inter-
action term may be decoupled with a Hubbard-
11040
Stratanovitch pair field ��q; !�. In order to extract the
desired correlation functions, we introduce a source term
J�q�

R
d4k’kc

y
�q=2��k"c

y
�q=2��k# � H:c:, where q � �q; !�.

At T > 0 the integral over imaginary frequencies is con-
verted into the usual Matsubara sum. Then, the desired
molecular distribution function is nq �

Z�1P
!!0�

2Z=�J�q; !��J��q; !0�. While the saddle-point
approximation gives us the BCS result, here we go beyond
and expand ��q; !� � �0��q� � ��q; !�, where �0 is the
saddle-point value of the gap. The RPA approximation
involves integrating out the fermions and expanding the
resulting effective action to quadratic order in the � and J
fields. The poles in the � propagator give the collective
mode spectrum. Finally, integrating out the � fields gives
us an effective action solely in terms of J, from which the
molecular distribution function n�q�MF � �nq (�nq is the
contribution due to fluctuations) may be evaluated.

Assuming that the fluctuation contribution is dominantly
from superfluid phonons, we can make a small momentum,
small frequency expansion. The J propagator takes the
form F�kfa�; kfa��cq�2 � �i!�2��1, where c is the sound
velocity. The implied linear dispersion is only an approxi-
mation due to the low q and! expansion: At momenta q *

4mc, the dispersion becomes quadratic; at !>�, phase
fluctuations can decay into quasiparticle excitations, lead-
ing to damping in the BCS limit at q * �=c 	 1=�.

Carrying out the Matsubara summation, we obtain the
RPA correction to the molecule momentum distribution
�n�q� � coth�cq=2T�F�kfa�; kfa�=�2cq�. The number of
noncondensed molecules due to these fluctuations is found
by integrating over q up to a natural cutoff. As discussed
above, such a cutoff is provided in the BCS limit by q1 �
1=�, and in the BEC limit by q2 � 4mc. We interpolate
between the two limits using q�1

0 � q�1
1 � q

�1
2 . The func-

tion F�kfa�; kfa� can be computed along the crossover
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FIG. 3. Simulated Dicke model dynamics: final molecule num-
ber as a function of the sweep rate. (a) Initial state at resonance.
The curves for different coupling constants gs fall on a universal
curve / 1= _�1=3 at fast rates, in agreement with (3) and (6).
(b) Initial state far detuned (� � 400�f, gs � 6�f). 1= _� behavior
due to unpaired atoms dominates.
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from BCS to BEC [12]. Figure 2 depicts the calculated
condensed molecule fraction for sweep rate corresponding
to projection at kfa� � 0:3. The nonmonotonic depen-
dence on detuning toward the BCS limit is due to competi-
tion between two effects. On the one hand, decreasing
phase fluctuations act to increase the condensed molecule
fraction. On the other hand, the ratio �f=� appearing in the
normal atom contribution diverges exponentially at large
detuning and eventually leads to the vanishing of the
molecular condensate fraction.

The total conversion into molecules as a function of
sweep rate is due to condensed Cooper pairs, unpaired
atoms, and fluctuations (uncondensed pairs). The fluctua-
tion contribution is encoded into the dependence of
F�kfa�; kfa� on kfa�. This is found to be proportional to
kfa� / �g2

s= _��1=3, the same as condensed Cooper pairs. By
contrast, conversion of unpaired atoms into molecules is
much less efficient and scales as �kfa��3 / g2

s= _�.
These results rely on the two stage model of the dynam-

ics and on the relation (3) that followed from it. We now
turn to a nontrivial check of this approximation. We start
from the microscopic two channel Hamiltonian [6],

H �
X
k�

��k ���c
y
�kc�k �

X
k

��k=2� �� 2��mykmk

� g
X
kq

�mqc
y
"kc
y
#q�k � H:c:� ��N; (7)

which is regularized by absorbing the high momentum
cutoff into renormalized detuning parameter [6]. Note
that mq describes a (bare) closed channel molecule.

We compute the dynamics of (7) within the Dicke model
(i.e., keeping onlymq�0). The initial state is taken to be the
equilibrium solution at detuning � � 0. Then � is changed
at a constant rate to far negative detuning where the equi-
librium population of m0 would be �96%. The resulting
dynamics (see, e.g., [7]) is calculated numerically.
Following the experiments, we count the number of mole-
cules in the final state, which to a good approximation is
jhm0ij

2. According to the two stage model, this is directly
related to the number of FMs produced after the sudden
stage. The results are summarized in Fig. 3. For initial state
at resonance, the dependence on sweep rate fits 1= _�1=3, as
expected from our two stage model. For weak pairing, deep
in the BCS regime, the dominant contribution is 1= _�,
although it is strongly suppressed here because the Dicke
model neglects molecules with q � 0.

In summary, we presented a simple model of the dy-
namics of rapid magnetic field sweeps across the FR. This
allowed us to relate the measurements of such dynamical
experiments to properties of the initial equilibrium state of
the fermions. For rapid sweeps at low temperatures, we
predict a nonmonotonic behavior of the final condensed
molecule fraction versus detuning, which is a direct sig-
nature of the quantum phase fluctuations in the initial state.
11040
In addition, the conversion efficiency to molecules at fast
sweep rates is argued to be a sensitive probe of pairing,
whether in a condensed state or not. This can be used to
establish the presence of a fluctuation induced pseudogap
phase. In this regime, we expect enhanced conversion
efficiency due to the presence of noncondensed fermion
pairs, despite a vanishing condensate fraction.
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