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Fermi-Like Behavior of Weakly Vibrated Granular Matter
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Vertical movement of zirconia-yttria stabilized 2 mm balls is measured by a laser facility at the surface
of a vibrated 3D granular matter under gravity. Realizations z�t� are measured from the top of the
container by tuning the fluidized gap with a 1D measurement window in the direction of the gravity. The
statistics obeys a Fermi-like configurational approach which is tested by the relation between the
dispersions in amplitude and velocity. We introduce a generalized equipartition law to characterize the
ensemble of particles which cannot be described in terms of a Brownian motion. The relation between
global granular temperature and the external excitation frequency is established.

DOI: 10.1103/PhysRevLett.95.108003 PACS numbers: 45.70.2n, 05.40.2a, 47.50.+d, 81.05.Rm
FIG. 1. Distance measurement [amplitude realizations z�t�]
corresponding to 13 layer GM �h � 21 mm� with 1.99 mm
ZrO2 � Y2O3 balls in a glass container of 30 mm diameter.
Setup for (a) the single particle measurement and (b) the laser
light barrier experiment.
A vibrated granular medium (GM) exhibits a wealth of
intriguing physical properties [1–5]. Since energy is con-
stantly being added to the system a nonequilibrium steady
state (SS) is reached [6]. In [7] we have studied the
spectrum properties of vibrated GM under gravity, and
shown that in the weakly excited regime the dynamics of
the fluidized particles cannot be described as simple
Brownian particles, this fact leads us to the conclusion
that in order to describe the cooperative dissipative dynam-
ics of the GM particles, it must be done in terms of
generalized Langevin particles [8,9].

Recently Hayakawa and Hong [10] introduced the ap-
proach of thermodynamics of a weakly excited granular
matter, in particular, vibrated GM by mapping the nonequi-
librium system with a ‘‘Fermion like’’ theory. Our experi-
mental conditions allow us to consider a N-particles sys-
tem of n rows in a cylindrical container as a 1D degenerate
Fermi system. Two experiments based on a laser were set
up to investigate the occupation dynamics at the fluidized
gap of the n-row GM. The first one considers a realization
z�t� of one particle from the top of the container by tuning
the fluidized gap with a 1D window in the gravity direc-
tion; see Fig. 1(a). It is clear that these realizations mainly
correspond to macroscopic Fermi-like particles (MFLP)
from near the ‘‘Fermi level’’. The second one concerns
the measurement after a long integration time of the mass
profile which corresponds to the Fermi-like profile; see
Fig. 1(b).

By focusing on the configurational properties of an
excluded volume theory, the SS mass profile can be under-
stood in terms of a configurational maximum principle
assumption. Excluded volume interactions of the GM do
not allow two grains to occupy the same state (gravitational
energy), thus the number of configurations is W �
�i��!=Ni!��� Ni�!�. Following Landau, to study a non-
equilibrium system, the maximization of S � lnW yields
that the profile is ���� � �1�Q exp������1�=mgD
where m, D are the mass and diameter of our balls; � is
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a Lagrange multiplier parameter, Q�1 � exp���� the fu-
gacity, and � � mgDs with s � 0; 1; 2; 3 . . . . Introducing
the normalization:

R
1
0 ����d� � N, we get

exp�N�mgD=�� � 1� exp����. Therefore the zero-
point ‘‘chemical potential’’ is �0 � mgDN=�, where
N=� is the number of balls in an elementary column of
diameter D. From these considerations it is trivial to see
that without vibration the center of mass (c.m.) is charac-
terized by zc:m: � �0=2mg � h=2. For vibrated GM the
Lagrange parameter � is a nontrivial function of the ve-
locity fluctuations. Before going ahead, let us denote
����=N as the cumulative probability that the energy �
will be occupied in an ideal GM layer at the nonequilib-
rium SS characterized by the global temperature ��1.

From ���� it is possible to calculate the c.m. expansion
as a function of �, the mean energy per particle, its square
dispersion �2

�, etc., Many questions concerning the GM
layer system are still open, in fact the stochastic motion of
the fluidized particles is not entirely known [11]. For
3-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.108003


FIG. 2. (a) �z vs�2
V , and the corresponding fittings by using �


vs �2
V solved from (6), or from (8) in the LT approximation. The

excitation frequency was from 60–180 Hz. (b) Lagrange pa-
rameter � vs �z.
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example, it is important to test that the spectrum of the
realization Sz�f� does not behave as Brownian particles
�1=f2�, but it has a more complex behavior, 1=f�, related to
a cooperative dynamics [7,9]. Thus an exhaustive analysis
of the realizations z�t� of these macroscopic Fermi-like
particles should be made. We have measured z�t� and we
calculate the Lagrange parameter � to show its complex
relation to the kinetic energy.

Amplitude dispersion vs the velocity dispersion.—A si-
nusoidal vibration is driven by a vibration plate on the GM
bed (with intensity � � A!2=g, where A is the amplitude,
g is the acceleration of gravity, and ! � 2�fe the fre-
quency of the plate). The vibration apparatus is set up by an
electromagnetic shaker (TIRAVIB5212) which allows [12]
for feedback through a piezoelectric accelerometer the
control of fe and � in the range of 10–7000 Hz, and
2–40g, respectively. The control loop is completed by an
Oscillator Lab-works SC121 and a TIRA 19=z amplifier of
1 kw. The n-row GM bed setup was ZrO2 � Y2O3 balls
with D � 1:99 mm and m � 26:8	 0:1 mg, into a glass
container of 30 mm of diameter with steel bottom; see
Fig. 1(a). The experiments were carried out in a chamber at
1 atm of air with 5:8	 0:2 g=m3 of water vapor. The
absolute humidity was controlled by using a Peltier con-
denser and a control loop through a thermo-hygrometer.
The humidity is of major relevance in order to control the
particle-particle and particle-wall contact forces [7,12,13].
Under such humidity controlled conditions, no surface
convection or convection rolls were observed in the GM,
nor rotational movement of the bed with respect to the
container, which is typical for a content of water vapor
>10 g=m3.

The z�t� of one particle was followed in a window of
12 mm with a laser device by using a triangulation method;
see Fig. 1(a). A laser emitter with a spot of 70 �m and a
linear image sensor (CCD-like array) enables a high speed
measurement with 100 � sec sampling. The linear image
sensing method measures the peak position values for the
light spots and suppresses the perturbation of secondary
peaks, which makes possible a resolution of 1 �m. The
shaker and the laser displacement sensor were placed on
vibration-isolated tables to isolate them from the external
vibrations, and the displacement sensor from the experi-
ment vibrations. The z�t� is a measure of the variations of
the distance (difference) between the particle and the sen-
sor around the surface of the GM bed (fluidized gap). The
measured z�t� without excitation reveals a white noise
<10 �m. Then our setup effective resolution is no higher
than 10 �m. We have shown [7] that depending on the
external excitation the z�t� can show from quasi-nonerratic
parabolas, for the movement under gravity, to realizations
of larger rugosity.

The registers of z�t� were taken with a 9354C Le Croy
Oscilloscope of 500 MHz. The velocity V�t� � dz=dt of
the MFLP was calculated numerically for �t � 100 � sec

from z�t� registers. The dispersions�z �
��������������������������������
hz�t�2i � hz�t�i2

p

10800
and �2
V � hV�t�

2i � hV�t�i2 were obtained from a window
of 2 s for each pair of registers fz�t�; V�t�g. In Fig. 2(a) we
report �z against �2

V for fixed � � 10; 20 and several fe
from 60 to 180 Hz for GM beds of h � 21 and 12 mm.

For weakly excited GM the displacement of the fluidized
particles, in the gap, can be studied from the profile ����.
In fact, a nonequilibrium SS density P�� � mgz�, charac-
terizing the motion of the fluidized MFLP, is sustained by
the input of energy from the plate colliding periodically
with the GM bed; i.e., a current of particles near �0 —
which is proportional to a gradient of ����—will be bal-
anced by the random input of mass coming from the
periodic movement of the plate. It is clear that P��� will
be a narrow density around �0, so we characterize the
movement of the MFLP at the Fermi-like sea by

P��� / �
d����
d�

; where � � mgz � mgDs: (1)

At the nonequilibrium SS the dispersion �z can be calcu-
lated from P�� � mgz�, but a rather simple and analytical
expression for a characteristic length scale z
 can be ob-
tained by solving �
 from the following consideration

qP��0� � P��0 � �
�; 0< q< 1; (2)

where q is a ‘‘cumulant’’ parameter. If P��� were Gaussian
the value q � 1=

���
e
p

would give the exact dispersion �
 �
���. We have tested that our conclusions are not changed
for values q� 1=

���
e
p

. Using���� in the expression for P���
we get for the characteristic scale �


exp
�
��


2

�
�
�2A� 1� �

�����������������������������������������������������������
�2A� 1�2 � 4Aq�A� 1�

p
2A

���
q
p ;

(3)

where A � e��0 , then by putting q� 1=
���
e
p

in (3) it gives
the amplitude dispersion z
 � �
=mg as a function of �.
Now the task is to determine � as a function of the kinetic
energy of the MFLP in the fluidized gap.
3-2



PRL 95, 108003 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005
If collisions were elastic, in a 1D ideal gas the equipar-
tition theorem says that total kinetic energy per particle is
related to the Lagrange parameter by m�2

V=2 � ��1=2.
Our conjecture for a weakly excited GM is to generalize
the equipartition law to

1

2
m
�2

V �
1

2

�N
N
��1; (4)

where m
 � �m accounts for inelastic factors, and �N=N
is a relative factor that counts the thermodynamically
‘‘active’’ MFLP in the fluidized gap. In fact, a granular
gas since its non-Gaussian velocity distribution reveals an
inelastic gas heated in a nonuniform way, with the ex-
pected high energy tail e�constantV3=2

.
The factor �N=N can be calculated from

�N �
Z 1
�0

����d� � N
�

1

��0
ln�2e��0 � 1� � 1

�
: (5)

So the implicit equation to solve � is

1

�

�
1

��0
ln�2e��0 � 1� � 1

�
� �m�2

V: (6)

Note that in the high temperature limit ��0 � 1 and for
the elastic case � � 1 we recover the equipartition theo-
rem. This situation is just what we have found experimen-
tally for one steel ball in a narrow glass cylinder [7]. In that
experiment, when we compared the relation �z vs �2

V , we
reduced the dissipation during the vibration and assured
that there is no rotation of the ball during its movement
z�t�, then from energetic considerations: mg�z �

1
2m�

2
V ,

predicting a line with slope 1=2g. The opposite situation is
in the limit ��0 
 1; in this case we arrive at the low
temperature (LT) scaling.

��1 ’ j�V j
�����������������������
�m�0= ln2

q
: (7)

Because of the fact that dissipation and degrees of freedom
are functions of the external parameters, we expect that the
analysis of the complex behavior of vibrated GM will be
enlightened from the study of �z � �z��

2
V�. Thus an im-

portant point would be to test experimentally our theoreti-
cal predictions. Noting that z
 � �z � �
=mg it is simple
to see that a LT (3) gives

� ’ 2
ln�1�

������������
1� q
p

� � ln
���
q
p

mg�z
; (8)

then using (7) we arrive at

�z ’ �ln�1�
������������
1� q

p
� � ln

���
q
p
�

�����������
4h�
g ln2

s
j�V j: (9)

Thus we got an explicit LT formula �z � �z��2
V� as a

function of the dissipative parameter �, which in fact is a
function of the external parameters � and fe.

In Fig. 2(a) we report the measurement of �z against �2
V

for two experimental studies of a GM bed with h � 21 and
10800
12 mm at � � 10 and 20, respectively, for several fe from
60 to 180 Hz. In that figure we also show the fit with our
theoretical prediction (resolved per least squares) showing
a very good agreement for �� 0:0009 and �� 0:0064
(� � 10 and 20, respectively). In Fig. 2(b) we show the
corresponding � against �z, where the f�g data set was
calculated from the f�Vg experimental data set for the two
experimental studies, using (7). By considering the mass of
the ZrO2 � Y2O3 ball and q� 1=

���
e
p

, we represent in
Fig. 2(b) the log-log plot of the Eq. (8), showing an
excellent agreement between the experimental data and
our theory. The two experimental data sets are on the
same curve due to the fact that we use for the two experi-
ments the same ZrO2 � Y2O3 balls.

Note that if all stochastic realizations could be under-
stood in terms of a Brownian oscillating movement around
�0, the P�z� would correspond to exp��z2C��, with C a
constant and ��1 proportional to the temperature. Then we
would have obtained �z / ��1=2 which is not the case
reported experimentally in Fig. 2(b). Here we point out
that in order to describe the spectrum of the fluidized
particles we should use a non-Markovian description [7].
Unfortunately we still do not have a time-dependent sta-
tistical description for the MFLP.

Global temperature against the external excitation.—
Equation (7) is the LT approximation of our generalized
equipartition theorem for a GM experiment out of equilib-
rium. Now we would like to find a relation between the
Lagrange parameter � and the external parameters char-
acterizing the input of energy. The maximum kinetic en-
ergy, per particle, transferred by the oscillating plate must
be proportional to the effective mass m
 and the dimen-
sionless velocity A!=

������
gd
p

, on the other hand the maxi-
mum potential energy related to the fluidized gap is
proportional to the variation of the c.m. at the global
temperature ��1. Thus we get the relation

�
2

�
A!������
gd
p

�
2
�
mg�zc:m:

�0
: (10)

Where �zc:m: � U=N ��0=2, with U �
R
1
0 �����d�. At

LT we get �zc:m: ’ ��=��
2=6�0, then

��1 ’
mh

��������������
3g�=d

p
�

A!; h � �0=mg: (11)

Using the relation A! � �g=2�fe we can transform (11)
in terms of the variables that we have fixed in our experi-
ment. From these considerations it is trivial to see that for a
given intensity � and increasing frequency fe !1 the
‘‘temperature’’! 0, (i.e., �2

z ! 0 and zc:m: ! h=2�. In
Fig. 3(a) we present the behavior of the global temperature
as a function of the excitation frequency, showing an
agreement with our theoretical prediction. In Fig. 3(a) a
least squares fitting is also shown giving a slope of
0:06 �J�1 s, while (11) gives 0:09 �J�1 s. The dispersion
in Fig. 3(a) is mainly introduced by the numerical calcu-
lation of dz=dt.
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FIG. 3. Comparison of the two experiments for a GM bed of
h � 21 mm under an acceleration � � 10. (a) the Lagrange
parameter ��fe� by measuring the realizations z�t� from the
top of the container. (b) profile ��z�=N integrated from the laser
light barrier during 3 h corresponding to � � 4:4	 0:2 �J�1 for
fe � 100 Hz, and � � 10:5	 0:5 �J�1 for fe � 125 Hz.
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The nonequilibrium SS Fermi-like profile.—We have
remarked that the profile ����=N gives the probability
that the energy � will be occupied in an ideal GM layer
at the nonequilibrium SS characterized by the global tem-
perature ��1. Note that ��� � mgz�=N decreases mono-
tonically with z from 1 to 0. In fact we can write����=N as
a cumulative probability ����=N � 1�

R
�
0  ��

0�d�0, and
interpret the density  ��� as associated to the fluidized gap.
We write the SS mass profile as

��z�=N �
�exp��mgh� � 1�

�exp��mgz� � exp��mgh� � 1�
: (12)

To measure the profile (12) we have implemented a second
experiment on a GM bed (h � 21 mm) with a laser light
barrier of 10 mm wide, Fig. 1(b). The voltage signal from
the position sensitive detector runs from 0 to 10 V, which
means a vertical window from 10 to 0 mm. We take
measurements every 3 s during 3 h, where the normalized
frequency count integrated from such a register is equal to
the occupation number �=N for z � �0=mg and to 1�
�=N for z < �0=mg. At a fixed fe and for � � 10 two
registers were obtained for fe � 100 Hz and fe � 125 Hz,
which were integrated and normalized to get the corre-
sponding profile ��z�=N. In Fig. 3(b) we show the profile
and our theoretical prediction (12). From this data we
obtain the values � � 4:4	 0:2 �J�1 for fe � 100 Hz,
and � � 10:5	 0:5 �J�1 for fe � 125 Hz, that we com-
pare with the results of the first experiment Fig. 3(a). Not
only is the agreement good, but this procedure also allows
a self-consistent test.

Discussion.—In Fig. 2(a) we show the amplitude dis-
persion �z against the velocity squared dispersion �2

V of
the realizations z�t�. For weak amplitude the slope �2

V=�z
shows a linear behavior and the departure from a linear
behavior is a clear evidence of the complex behavior of the
GM bed. This indicates that for this regime it is necessary
to introduce a description in terms of our theory.
10800
The corresponding global temperature �kB���1 for a
fluidized gap to occur happens to be at T � 9:2	 0:5�
1015 K, which means fe � 130 Hz for � � 10; see the
transition in Fig. 3(a). Feitosa et al. measure for a dilute
granular gas a range of temperatures of the order of T �
500 PK (petakelvin); see Fig. 5 of Ref. [5]. This range is
higher than our measurements; however, it is in agreement
with them since our corresponds to a weakly fluidized GM.
From [7] we know that the movement of the MFLP when
the fluidized gap appears can be approximated by a
Brownian motion, but this description changes to a more
complex stochastic behavior by decreasing fe (for fixed �)
when the temperature reaches T � 15 PK. This global
temperature should be understood, indeed, as equivalent
to an order parameter of the stochastic process in the
energy configuration. We remark that around the fluidiza-
tion transition where the stochastic dynamics start to apply
dz=dt occurs with larger rugosity. Then a proper descrip-
tion in terms of differentiable realizations z�t� is well
defined in the weakly excited region (T > 9 PK) where
the dynamics start to be non-Markovian. For lower tem-
peratures (T & 9 PK) despite of the larger rugosity of
realizations z�t�, the calculation of �2

V from a time window
of 2 s makes it reliable. This numerical calculation only
introduces, for such range, a larger dispersion of the data in
the curve of Fig. 2(b), but again in good agreement with
Eq. (8).
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