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Diffusion-Controlled Electron Transfer Processes and Power-Law Statistics
of Fluorescence Intermittency of Nanoparticles
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A mechanism involving diffusion-controlled electron transfer processes in Debye and non-Debye
dielectric media is proposed to elucidate the power-law distribution for the lifetime of a blinking quantum
dot. This model leads to two complementary regimes of power law with a sum of the exponents equal to 2,
and to a specific value for the exponent in terms of a distribution of the diffusion correlation times. It also
links the exponential bending tail with energetic and kinetic parameters.
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Recent advances in nanoscience and nanotechnology
and their potential applications have generated wide inter-
est. The development of techniques in probing single
molecules has provided a tool to study its intrinsic prop-
erties and its interaction with the surroundings. One of the
unusual phenomena observed in nanoparticles is fluores-
cence intermittency of quantum dots and the power-law
statistics for the duration time for the ‘‘on’’ an ‘‘off’’ events
[1–10]. Supplementing previous theoretical studies
[6,7,11–16], a mechanism is provided in this Letter to elu-
cidate these phenomena. This model involves diffusion-
controlled charge transfer processes in energy or configu-
ration space [17,18]. For fast diffusion, the model yields
the well-known simple exponential decay. However, in the
regime of slow diffusion, the model leads naturally to a
power-law behavior. To be more general, we consider
anomalous diffusion in a non-Debye dielectric medium
with a distribution of diffusion correlation times. There
exists in the literature two approaches, partial ordering
prescription (POP) with a time-dependent but nonretarded
diffusion coefficient, and chronological ordering prescrip-
tion (COP) with convolution of a time-retarded diffusion
kernel [19]. POP is more commonly used in treating elec-
tron transfer reactions [20], These diffusion-controlled
reaction models provide physical insight into the specific
value of the exponent, a reason for the bending tail at
longer times, and the connection of the bending factor
to the activation energy of the electron transfer rate
constant.

In this work, one models stochastic processes in the en-
ergy or configuration space that represent the fluctuating
interactions of a probe (a single molecule or a quantum
dot) with its surrounding heat bath (supporting substrate or
anchored organic molecules). We consider a POP type 1D
non-Markovian equation, with a population sink at the
potential energy crossing (Q � Qc) between U1�Q� for
the ‘‘light’’ state j1i and U2�Q� for the ‘‘dark’’ state j2i.
One has
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One can obtain the Green function for sink-free diffusion
in a harmonic potential �q2=2 as [20]
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where the diffusion constant Dk�t� is related to the dielec-
tric response function 	��s� and the dielectric permittivity
	"�s� by [20]
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For a Debye medium 	��s� � 1=�1� s�D�, one has
	�L;k�s� � �L;k 
 �D;k"1="0, �k�t� � exp��t=�L;k�, and a
time-independent diffusion constant D�t� � �2

k=�L;k as
considered in our previous study [16], whereas for a
Cole-Davison (CD) dielectric medium [21] 	��s� � 1=�1�
s�D��CD , diffusion constant is time dependent.

It can be shown from Eqs. (1b) and (1c) that in the
short time regime (t� �L, and �D) the mean square dis-
placement �2�t�� h�Q�t��hQ�t�i�2i�2�t=�D��CD�2�D=
�L��1��CD�. At times t much longer than the diffusion
correlation time, however, �2�t� becomes a constant as the
system approaches thermal equilibrium. The asymptotic
behavior of �2�t� at both short and long time limits have
also been obtained previously by Metzler et al. [22], using
a different approach with a fractional Fokker-Planck
equation.
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Because each blinking event starts at the energy-level
crossing, one has the initial condition ���Q; 0� � ��Q�
Qc�. The blinking statistics Pon�t� for the on events of a
neutral quantum dot (QD) [or Poff�t� for the off events of a
dark QD] is defined as the waiting time distribution func-
tion for a QD that is initially in the neutral light state (or
dark state) and is turned into the charged ‘‘dark state’’ (or
light state) between t and t� dt per unit dt. Using the
Green function method, the Laplace transform of P�t� can
be derived from Eq. (1) as
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For simplicity, diffusion on harmonic potentials
U1�Q� � ��Q�Q0;1�

2=2 and U2�Q� � ��Q�
Q0;2�

2=2��G0 is considered, where � is the force con-
stant ��2

k � kBT, �G0 the free energy gap, and the reor-
ganization energy � � ��Q0;1 �Q0;2�

2=2. In the short
time limit, Eq. (1b) yields
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or
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where we defined two parameters tc;k and  k as
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and ���CD � 1� is the gamma function. From Eqs. (2) and
(3) one obtains

	P k�S� �
1

1� ��s�  k�tc;k�1��CD=2
: (4)

For the normal diffusion case in a Debye medium with
�CD � 1, from the inverse Laplace transform of Eq. (4),
one obtains
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as illustrated in Fig. 1 and
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Equations (5) and (6) were obtained previously [16]. From
Eq. (3b), one can relate  k to Ea;k, the energy difference
between the potentials at the crossing and the bottom, by
 k � Ea;k=2�L;kkBT, where Ea;on � ��Qc �Q0;1�

2=2 �
��� �G0�2=4� and Ea;off � ��Qc �Q0;2�

2=2 �
��� �G0�2=4�. The bending tail observed for the on
events [4] implies a large Ea;on or a short �L;I for the
forward reaction. Because diffusion is light driven [23],
�L;I decreases at higher light intensity and the bending
factor increases. At small s�t� �k�, Ak 	Gk�Qc;Qc; s� �
%k=s� fk and Eq. (2) yields
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where %1 and %2 are the nonadiabatic forward and back-

ward rate constants and fk 
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tion (6) indicates a power-law distribution with an expo-
nent at �1=2 at very short time which changes later to
�3=2 with an exponential damping tail, and finally be-
comes the single exponential in Eq. (7) at a much longer
time.

For the anomalous diffusion case, as in a Cole-Davidson
dielectric medium [21] with �CD � 1, the inverse Laplace
transform of Eq. (4) is related to the time derivative of the
Mittag-Leffler function [24]

Pk�t� �
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where Ea�z� � �1
n�0z

n=��na� 1�. Two complementary
power-law regimes are illustrated in Fig. 2 and
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The above results correspond to the first passage approxi-
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FIG. 1 (color online). tcP�t� for normal diffusion with * � 0
(or �CD 
 1� * � 1). According to Eq. (3), the bending tail
t�1:5 exp�� t� at longer time is controlled by �L;k and the ratio
between Ea;k and the thermal energy.
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mation from the above POP treatment. We have also
obtained the same power law in Eq. (9) by COP treatment
using a time-retarded diffusion kernel. Their slight differ-
ences occur at longer time when 1= k � t � �L;k.

The experimental values for the exponent varies among
research groups, some reported a value close to �1:5,
whereas others reported a larger value, e.g., Shimizu
et al. (CdSe, mon;off � �1:5, CdTe, mon;off � �1:6) [4]
and (CdSe on gold substrate, mon;off � �1:4) [5], Kuno
et al. (CdSe, moff � �1:5 at 10 ms=bin, �1:6 at
0:1 ms=bin) [1] and (CdSe, mon � �1:6, moff � �1:7)
[7] and (InP, mon��2:0, moff � �1:5) [3], Brokmann
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FIG. 2 (color online). tcP�t� for several *’s, * defined as 1�
�CD, showing two complementary power-law regimes, separated
by the critical time constant tc (arbitrarily set at 0.1 ms as an
example) with a sum of the corresponding exponents equal to 2.
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et al. (CdSe, mon � �1:58, moff � �1:48) [8], Verberk
et al. (CdSe, m � �1:65) [6], Pelton et al. (CdSe, m �
�1:7) [9], Cichos et al. (Si, mon � �2:2, moff � �1:7)
[10]. A more recent experimental study by Issac et al. [25]
indicates a correlation of the exponent with dielectric
properties as also suggested by this work. Anomalous
diffusion is often observed in disordered systems [26].

In conclusion, the diffusion-controlled reaction mecha-
nism is proposed as an underlying mechanism for fluores-
cence intermittency of QDs. It leads to a power law
P�t� � tm exp�� t� and accommodates m to be different
from the ideal �1:5 due to the dispersive diffusion corre-
lation times. The present model provides some physical
links for the exponent m � �2� �CD=2, the critical time
tc;k (separating two complementary regimes) and the ex-
ponential bending tail exp�� kt�, with  k related to ener-
getic parameters (reorganization energy �, free energy gap
�G0, temperature) and kinetic parameters (�L and �D). A
complementary power-law behavior with m � ��CD=2 is
predicted at a time shorter than tc, where tc is controlled by
the structural parameters such as electronic coupling Vk
and others. A power law has also been observed in single
molecule Raman spectroscopy [27] and in protein confor-
mation dynamics [28]. The possible extension of this
diffusion-controlled reaction model to these areas remains
to be explored.
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