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Current-Spin Coupling for Ferromagnetic Domain Walls in Fine Wires
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The coupling between a current and a domain wall is examined. In the presence of a finite current and in
the absence of a potential which breaks the translational symmetry, there is a perfect transfer of angular
momentum from the conduction electrons to the wall. As a result, the ground state is in uniform motion
and this remains the case even when relaxation is included. This is described by, appropriately modified,
Landau-Lifshitz-Gilbert equations. The results for a simple pinning model are compared with experiment.
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Spintronic devices have great technological promise but
represent a challenging problem at both an applied and a
fundamental level. It has been shown theoretically [1,2]
that the direction of a magnetic domain might be switched
using currents alone. Devices designed to use this principle
often consist of multilayers of magnetic and nonmagnetic
conductors. The advantages of similar devices based upon
the current induced displacement of a domain wall are
simplicity and the fact that the switching current is much
smaller [3–6]. Experimentally the current induced dis-
placement of a domain wall has been clearly demonstrated
and in recent experiments [5,6] the velocity of the wall was
measured.

The current induced motion of a magnetic domain in-
volves the transfer of angular momentum from the con-
duction electrons. The early theory [1,2] and most of the
subsequent work [7] are based upon some type of assump-
tion about this torque transfer process and there is no real
consensus on how this should appear in the (Landau-
Lifshitz-Gilbert) equations of motion [7]. The purpose of
this Letter is to develop a complete theory of this pro-
cess for a domain wall, based upon a specific model
Hamiltonian and physically justified approximations.

The current carrying ferromagnetic wire lies along an
easy z axis, and although similar conclusions are valid for
the Stoner (and related) models, here attention will be
focused upon the s� d-exchange model. The direction
of the local moments, ~Si, which make up the domain
wall, is specified by the Euler angles �i and �i. To make
diagonal the interaction H tJ � �J ~Si � ~si, at site i, the axis
of quantization of the conduction electron moments ~si is
rotated along this same direction. Here, J is the conduction
electron to local moment exchange constant. If  �~ri; t�
is the conduction electron spinor field at the position ~ri,
then this amounts to making a SU(2) gauge transformation,
 � ~ri; t� ! r��i; �i� �~ri; t�, where r��i;�i� � ei�isz=@ �

ei�isy=@e�i�isz=@ and where ~s � @ ~�
2 and ~� are the Pauli

matrices. This transformation introduces no less than
three gauge fields. The longitudinal such field has been
exploited in the development of theories of the Hall ef-
fect [8]. Bazaliy et al. [9] describe angular momentum
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transfer in terms of this same field. That a transverse field
appears in their Landau-Litshiftz equations reflects a finite
@V f�i; �ig=@�i, where V f�i; �ig is the energy as a func-
tion of the angles f�i; �ig. This current induced transverse
field leads to a solution in which the wall moves with a
finite velocity, but which cannot be the ground state since
it is equally the case that the equilibrium conditions re-
quire both @V =@�i and @V =@�i to be zero. This state
must relax into one which is stationary and for which
@V =@�i � 0. If true, this demonstrates the existence of
intrinsic pinning, as pointed out by Tatara and Kohno [10].
Here it will be shown that such pinning does not exist; i.e.,
the ground state has a finite velocity in the absence of
extrinsic pinning.

In order to compare with experiment, damping due to
extrinsic defect pinning is introduced on a phenomenologi-
cal basis. The resulting predictions for the velocity of the
wall are found to be consistent with experiment.

Given that the domain wall lies in z-x plane, i.e., that
the �i � 0 (see below), angular momentum transfer ef-
fects can be accounted for in a simpler U(1) theory for ro-
tations about the perpendicular axis. The rotations r��i� �
ei�isy=@ � �cos��i=2� 	 i sin��i=2��y
 are all that is needed

to diagonalize �J ~S � ~s. This simpler approach can only
generate a single transverse gauge field, precisely that
ignored in the earlier work [9], and this alone is found to
be the origin of the transfer process.

The Hamiltonian is H �H e 	H s 	H tJ, where

H e � �
X

hiji��0
�cyi�tij��0cj�0 	 H:c:� ��N̂ (1)

is the electronic part, while the spin Hamiltonian

H s � �
X

i

�A0S2
iz � K

0
?S

2
iy� � J

0
s

X

hiji

~Si � ~Sj: (2)

The cyi� are the conduction electron creation operators for
spin � and site i. The uniform hopping integral is tij��0 �
t���0 , and N̂ is the number operator. The constant J0

s
reflects the direct exchange between local moments. The
anisotropy constants A0 and K0

? are positive, making the z
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direction easy with the y axis hard. These reflect both
intrinsic anisotropy and the demagnetizing field.

The Holstein-Primakoff transformation [11] Siz �
@�S� byi bi�, S

	
i � @�2S� b

y
i bi�

1=2bi � @�2S�
1=2bi, using

the direction defined by �i and �i as the axis of quantiza-
tion for the local spins, leads to H s �V f�i; �ig 	H b.
To within a constant, the usual energy functional
V f�i; �ig � V ‘f�i; �ig 	V Jf�i; �ig comprises a single
ion part,

V ‘f�i;�ig��@
2AS2cos2�i	@2K?S2sin2�isin2�i; (3)

where A � ��2S� 1�=2S
A0, K? � ��2S� 1�=2S
K0
?.

The interactions lead to

V Jf�i; �ig � �
X

hiji

@
2JsS

2 cos�ij: (4)

In the continuum limit, dropping a constant, V J �

@
2JsS

2P
hiji�

~r� � ~rij�
2, where ~rij � ~ri � ~rj. The remaining

part H b, which describes magnons, is not relevant for the
ground state properties. Minimizing V f�i;�ig gives
��zi� � 2cot�1e��zi=w� with � � 0, where zi is the z coor-
dinate of site i. The wall width w � a�Js=2A�1=2, where a
is the lattice spacing. This corresponds to the static solution
without currents.

Including the diagonal part of H tJ, after performing the
U(1) rotations r��i� � r���~ri��, the electronic part,

H eJ � �
X

hiji��0
�cyi�tij��0cj�0 	 H:c:� � @JS

X

i

siz ��N̂;

(5)

where tij � tr�1��� ~ri��r��� ~rj�� reduces to

tij � t�cos� ~r� � ~rij� 	 i� ~r� � ~rij��y
: (6)

Correct to second order in the gradient,

tij � ei
R~rj

~ri
~A�d~rt cos� ~r� � ~rij�; ~A � ~r�sy: (7)

This is the key result of the formulation. The effect of the
wall is to reduce the hopping matrix element by a factor of
cos� ~r� � ~rij�, but most importantly it introduces a trans-

verse, i.e., spin off diagonal, effective vector potential ~A.
As does any vector potential, this couples to the current
(see below).

Dropping the off-diagonal parts of H tJ implies that, as
the electrons pass through the wall, they adiabatically
follow the local spin magnetization. It is precisely the
term of interest �t?ij � it� ~r� � ~rij��y which leads to devi-
ations from the adiabatic limit and which also causes the
transfer of angular momentum to the wall. Without �t?ij ,

the ground state of H ej indeed has h ~Sii and h ~sii parallel.
The adiabatic approximation is manifestly valid in the half
metal limit when J� t. The ground state is then a mixture
of states in which all sites are either singly occupied by an
electron or unoccupied. The singly occupied sites with the
10720
maximum angular momentum S	 �1=2� have the lowest
energy while other states, and those with two electrons per
site, have an energy which is higher by @JS and hence
have negligible weight in the ground state. The Wigner-
Eckart theorem then dictates that all the matrix elements of
~si are equal to those of � ~Si=2S�. However, a much weaker
inequality suffices. The adiabatic theorem demands that
the transverse field �t?ij be small compared to the longitu-
dinal field @JS. The wall rotates by � over a distance w so
~r�i  �=w and �t?ij  i�t�a=w�, and required is

�t�a=w� � @JS; (8)

which since, e.g., for Permalloy w=a 103, is typically
well satisfied. The conduction electron magnetization
comprises two components with, by definition, the (minor-
ity) majority conduction electrons (anti-)parallel to the axis
of quantization, i.e., the direction of the local spin. In the
local frame the majority (minority) electrons have �z �
	1 (�z � �1), so that it follows that when the adiabatic
theorem is satisfied,

~s i � �z� ~Si=2S�; (9)

independent of the details of the electronic structure, etc.
When the transverse parts are ignored, tij � t cos� ~r� �

~rij�. Using � ~r� � ~rij�  �a=w, the correction is
t�2�a=w�2, which with �a=w�  10�3 might be safely
ignored; i.e., there is a negligible pressure on the wall. The
correction in the spin sector is important, since evaluating
the coefficient of � ~r� � ~rij�2 leads to a renormalization
Js � J0

s 	 �x0t=2S2� of the exchange coupling. The effec-
tive concentration x0 � hcyi cji [12].

Even when �t?ij is included, H eJ is of single particle
nature. Consider first H eJ for majority spin electrons. In
order to account for �t?ij , use is made of Eq. (9). To this
end, it is noted, for majority electrons,

P
��0c

y
i� �

�y��0cj�0 � i�s�i c
y
i"cj" � c

y
i"cj"s

	
j �=@. Then by virtue of

Eq. (9), e.g., s	i � @�2S�
�1=2bi and

P
��0c

y
i��y��0cj�0 �

i�2S��1=2cyi"cj"�b
y
i � bj�. Combining this with the similar

result for the minority electrons, that part of H eJ propor-
tional to � ~r� � ~rij� defines

H � � �
t

2�2S�1=2

X

ij�

�� ~r� � ~rij�c
y
i�cj��bi � b

y
j � 	 H:c:;

(10)

which couples the spin current to spin deviations and
reflects the entire angular momentum transfer process.
This sole remaining interaction between the spin and
charge sectors is a perturbation. The effective interaction
is obtained by taking the expectation value with respect to
the conduction electrons. The final result is then

H � � �i
@jsa

3

2eS

X

i

@�
@z
��2S�1=2�bi � b

y
i �
; (11)

where js is the spin current. Here byi	1 is replaced by byi , an
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approximation valid in the continuum limit w� a. The
quantity @�2S�1=2�bi � b

y
i �=2i � Siy and H � corresponds

to an effective field which is strictly transverse in spin
space. The appearance of such a term linear in �bi � b

y
i �

signals that there is no time independent solution.
That the wall is in motion implies that the rotations

r��� ~ri; t�� are also time dependent. A time dependent rotat-
ing frame is generated by R � e�i��~ri;t�Miy , where @ ~Mi �
~Si 	 ~si involves the total spin angular momentum, whence
the equations of motion become i@�@=@t�R�1 ~MR �
� ~M;H 
, where ~M is now defined in the rotating frame.
The effect is H !H � @�@�=@t�Miy. This generates a
second purely transverse field term in the effective
Hamiltonian:

�@
X

i

@�
@t
Miy � i@

M
S

X

i

@�
@t
�2S�1=2�bi � b

y
i �;

using the fact that � ~Mi=M� � � ~Si=@S�, i.e., that all magnet-
izations are parallel. Thus when

@�
@t
	 v0

@�
@z
� 0; v0 �

jsa3

2eM
; (12)

the transverse effective fields generated by the spatial and
temporal derivatives cancel each other. Given ��zi� �
2cot�1e��zi=w� for js � 0, the new ground state has ��zi� !
��zi � v0t�; i.e., the wall moves without distortion and
without tilting or twisting. It is easy to show that the result
v0 � �jsa3=2eM� reflects the conservation of the z com-
ponent of the total angular momentum, i.e., that the net
spin current, 2js, carried towards the wall by the elec-
trons equals the change in the angular momentum, JS �
Mv0=a

3, of the wall due to its motion. Since the conduc-
tion electrons are polarized, js � pj is related to the charge
current j by some material determined parameter p.

For the slice of the wall between z and z	 dz, the
Landau-Lifshitz (LL) equations, with a divergence ~D
and a relaxation ~R term, are

@ ~M
@t
	 ~D��

g�B

@

~M� ~B� ~R; ~D� ~r � ~~js; (13)

where ~B � ��@V =@ ~M� and ~~js is the spin current tensor.
As Gilbert recently emphasizes in connection with a single
domain [13], for ~D � 0, his ~Rg � ��=M� ~M� �@ ~M=@t�

and the original LL ~R‘ � �	=M2� ~M� � ~M� ~B� are, to
within a renormalization of parameters, mathematically
equivalent. Since ��0, Mx�Msin� and Mz�Mcos�,
whence Eq. (12) implies �@ ~M=@t� 	 v0�@ ~M=@z� � 0. This
permits the identification ~D � v0�@ ~M=@z�. It is a suffi-
cient condition for the second law of thermodynamics to be
satisfied that ~R � 0 when V ��;�� corresponds to an en-
ergy minimum. For nonequibrium situations, e.g., when
~D � 0, this is manifestly the case for the LL, ~R‘ but not

the Gilbert ~Rg. This follows since, with ~B � ��@V =@ ~M�,
~M� ~B � 0 implies such a minimum and ~R‘ � 0. The
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Landau-Lifshitz-Gilbert (LLG) equations with relaxation
mathematically equivalent to that of LL are

D ~M
Dt
�
@ ~M
@t
	 v0

@ ~M
@z
� �

g�B

@

~M� ~B�
�
M

~M�
D ~M
Dt

:

(14)

The ‘‘particle derivative’’ D ~M=Dt (more generally� @ ~M
@t 	

~v0 �
~r ~M ) occurs in fluid flow and here is the time derivative

taken at a fixed position in the moving wall. We contend
that Eqs. (14) embody correctly the relaxation dynamics of
a domain wall driven by currents and external fields when
~v0�t� is suitably generalized. In general, this velocity field
does not coincide with the actual local velocity. The usual
LLG equations are recovered instantaneously during times
when the wall is not externally driven, i.e., when this
generalized v0�t� � 0.

In the Landau-Lifshitz equations obtained by Bazaliy
et al. [9], the term proportional to js (or v0) arises from a
finite @V =@�, via ~B � � @V

@ ~M
, which implies that ~D � 0

and that D ~M
Dt �

@ ~M
@t . Relaxed states would have j @ ~M@t j � 0,

and intrinsic pinning would result. The relaxed solution of
Eq. (14) has D ~M

Dt � 0, which is the equivalent of Eq. (12);
i.e., relaxation is absent for the uniform motion induced by
a current and there is no intrinsic pinning [9,10].

That, in fact, @V =@� � 0 has been verified by per-
forming the full SU(2) transformations. After some alge-
bra, the result is Eq. (7) with ~A � �1=2�� ~r���0y 	 �1=2� �

sin�� ~r���0x 	 �1� cos��� ~r���0z, where the ~�0 are de-
fined in the local frame of reference. The last term gen-
erates V s � v0�1� cos��� ~r�� in the effective spin
Lagrangian density. With a kinetic energy density T �
S@�cos�� 1��d�=dt�, this V s reproduces Eq. (12) [14].
Substituting ��x0� � ��x� v0t� and ��x0� � ��x� v0t�
then leads to a Lagangian density for ��x0� and ��x0�,
which is identical to that for js � 0, thereby establishing
that the sliding state implied by Eq. (12) is indeed the
ground state for js � 0.

The effect of extrinsic pinning depends very much on the
details of the pinning potential V p�z� and the value of K?.
It will be assumed that K? is large enough that the devia-
tions in � due to the pressure Pz � ��@V p=@z�=A are
small. Such a pressure is equivalent to an applied magnetic
field in the z direction and results in

@�
@t
�

a3

2M@
Pz; (15)

which illustrates that the wall momentum is p � 2AM@
a3 �.

The coordinate of the wall is z � a3

2AM@Mz, and from
Eq. (14) it follows that

@z
@t
� v0 �

1

mD
p� �0

a3

2@
Pz; (16)

where mD / 1=K? is the Doring mass and where this and
�0 / � depend on the detailed wall structure. These are
just the traditional equation which describe domain wall
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FIG. 1 (color online). The experimental points are taken from
[5]. The solid line corresponds to the value of C from Eq. (18)
with p � 0:7. The inset shows the equivalent particle problem.
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motion with the relaxation modified as outlined above and
with the angular momentum transfer term added [see, e.g.,
Eqs. (10.11) and (11.2) of Ref. [15] ]. Without the current
v0 term, these are the homogeneous differential equations
of motion for a ‘‘particle’’ moving in the potential V �z� as
in the inset of Fig. 1. Assuming that v0 and the relaxation
are small corrections, Pz might be replaced by its average
hPzi over the motion. With this,

@z
@t
� �v0 � vr� �

1

mD
p; (17)

where vr � �0 a
3

2@ hPzi. The particular integral of this, i.e.,
the steady state solution, is obtained by eliminating the
quantity �v0 � vr� by z! z� �v0 � vr�t. This causes the
potential to become time dependent, i.e., the motion is that
of a free particle driven by a time dependent force with
zero average and no relaxation. In the original frame the
resulting oscillations must be added to the constant veloc-
ity �v0 � vr�. The nonconservative driving term has placed
the particle at an energy above the top of the maxima in the
pinning potential. The average hPzi is nonzero since the
particle spends more time in the regions where the retard-
ing effects of this same term are the greatest. This average
depends strongly only on the velocity near the maxima in
Pz, and these are far from the top of the well. The relevant
velocities and therefore hPzi are insensitive to small
changes in the particle energy for the energies of interest.
This justifies assuming that vr is a constant near to the
critical current. The kinetic critical current jk is evidently
given by v0 � vr. Near to this threshold current, the aver-
age velocity,

v � pC�j� jk�; C �
a3

2eM
: (18)

Important is that the velocity near threshold is greatly
reduced but that C is independent of jk; i.e., above the
critical current, the angular momentum not destroyed by
the pinning is 100% converted into motion of the wall.
10720
In Fig. 1 this prediction is compared with the experi-
ments of Yamaguchi et al. [5]. Using the lattice con-
stant for Permalloy, with M�1, C�4:5�10�11 m3=C,
and using p�0:7 suggested in Ref. [5], pC�3:15�
10�11 m3=C. This corresponds approximately to the gra-
dient of the line shown in Fig. 1. Clearly, within a factor of
2 in either sense, this is consistent with the trend of the data
points.
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