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Breakdown of One-Parameter Scaling in Quantum Critical Scenarios
for High-Temperature Copper-Oxide Superconductors

Philip Phillips
Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1110 W.Green St., Urbana, Illinois, 61801-3080, USA

Claudio Chamon
Department of Physics, Boston University, Boston, Massachusetts 02215, USA

(Received 8 December 2004; published 31 August 2005)
0031-9007=
We show that if the excitations which become gapless at a quantum critical point also carry the
electrical current, then a resistivity linear in temperature, as is observed in the copper-oxide high-
temperature superconductors, obtains only if the dynamical exponent z satisfies the unphysical constraint,
z < 0. At fault here is the universal scaling hypothesis that, at a continuous phase transition, the only
relevant length scale is the correlation length. Consequently, either the electrical current in the normal
state of the cuprates is carried by degrees of freedom which do not undergo a quantum phase transition, or
quantum critical scenarios must forgo this basic scaling hypothesis and demand that more than a single-
correlation length scale is necessary to model transport in the cuprates.
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FIG. 1. Heuristic phase diagram of the high-temperature
copper-oxide superconductors as a function of temperature and
hole concentration (doping). The phases are as follows: AF
represents antiferromagnet; SG, the spin glass; and SC, the
superconductor. The spin-glass phase terminates at a critical
doping level (quantum critical point, QCP) inside the dome.
The dashed lines indicate crossovers not critical behavior. In this
context, PG is the pseudogap phase in which the single-particle
density of states develops a dip at the chemical potential and FL
is the Fermi liquid phase.
The central problem posed by the normal state of the
high-temperature copper-oxide superconductors (cuprates)
is the riddle of the T-linear resistivity [1]. Namely, over a
funnel-shaped region in the temperature-doping plane (as
in Fig. 1), the resistivity is a linear function of temperature
rather than the T2 dependence indicative of typical metals.
Equally perplexing is the persistence of this transport
anomaly to unusually high temperatures, roughly
1000 K. At present, there is no consensus as to the origin
of this robust phenomenon. However, two scenarios,
(1) marginal Fermi liquid (MFL) phenomenology [2] and
(2) quantum criticality [3,4] have been advanced. The
former rests on a proposed form for the self-energy that
both describes the broad line shapes observed in angularly
resolved photoemission and yields a scattering rate, and
hence a conductivity, that scales linearly with temperature.
In contrast, quantum criticality provides a first-principles
account. At the quantum critical coupling, or in the quan-
tum critical regime, the only energy scale governing colli-
sions between quasiparticle excitations of the order
parameter is kBT. Consequently, the transport relaxation
rate scales as

1

�tr
/
kBT
@
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thereby implying a T-linear resistivity if (naively) the
scattering rate is what solely dictates the transport coeffi-
cients. While MFL fitting [2] also achieves a scattering rate
of this form, a T � 0 phase transition is not necessarily the
operative cause. The fact that temperature emerges as the
only scale in the quantum critical regime regardless of the
nature of the quasiparticle interactions is a consequence of
universality. Equation (1) is expected to hold as long as the
inequalities T > j�j and t < 1=j�j are maintained, with �
the energy scale measuring the distance from the critical
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point and t the observation time. The energy scale � / �z�

varies as a function of some tuning parameter � � g� gc,
where � is the correlation length exponent and z is the
dynamical exponent. At the critical coupling � � 0 or g �
gc, the energy scale � vanishes. Ultimately, the observa-
tion time constraint, t < 1=j�j implies that only at the
quantum critical point is the T-linear scattering rate ob-
tained for all times. That the quantum critical regime is
funnel shaped follows from the inequality T > j�j. The
funnel-shaped critical region should be bounded by a
temperature Tupper above which the system is controlled
by high-energy processes. That quantum criticality is op-
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erative up to temperatures of order T � 1000 K in the
cuprates is questionable, but we relax this criticism in
carrying out our analysis of the scaling of the resistivity.

Because Eq. (1) is valid for any T � 0 phase transition,
it has been quickly adopted as the explanation of choice for
the T-linear resistivity in the cuprates. In fact, there has
been no paucity [5–9] of candidate quantum critical points
proposed for the cuprates: (1) at 1=8th-hole doping in
Bi2Sr2�xLaxCuO6�� at 58 T, a transition [5] occurs be-
tween an anisotropic 2D and a 3D superconductor, (2) near
optimal doping, the Hall coefficient [6] exhibits a signifi-
cant break, indicating a fundamental restructuring of the
Fermi surface, and (3) in La2�xSrxCu0:95Zn0:05O4 a spin-
glass state terminates [8] at roughly optimal doping, x �
0:19. Regardless of its origin, a T � 0 phase transition near
optimal doping can, in principle, account for the funnel-
shaped T-linear region seen in early transport experiments.
However, several experiments [10,11] call into question
the very existence of such a wide region. Namely, Raffy,
et al. [10] and also Ando, et al. [11] find that the T-linear
region is not a region at all, existing only at optimal doping.
While Ando, et al. [11] argue that the absence of a trian-
gular region (in the T-x plane) near optimal doping
strongly suggests that quantum criticality is not the cause
of the T-linear resistivity, an equally valid explanation is
that the time constraint t < 1=j�j is violated except at
optimal doping. Nonetheless, optical transport measure-
ments [9] find that contrary to theoretical predictions
[12], the optical conductivity does not obey the predicted
scaling law T��f�!=T� with a constant � as !=T is
varied. In contrast, they find [9] that � � 1 for !=T <
1:5 and � � 0:5 for !=T > 3. In addition, in the quantum
critical regime of other strongly correlated systems, such as
the heavy fermions [13], the resistivity exhibits a nonun-
iversal algebraic temperature dependence of the form � /
�0 � AT� with 0:3<�< 2:0 and A< 0 or A> 0.

Motivated by such experiments, we examine what con-
ditions must hold for T-linear resistivity to be compatible
with the universally accepted assumption that, at a con-
tinuous quantum critical point, the only relevant length
scale is the correlation length. We obtain, using the single
scale hypothesis and the fact that electric charge is con-
served, a very general scaling law for the electric conduc-
tivity near a quantum critical point. This scaling law must
hold irrespective of the microscopic details of the theory,
and regardless of the quantum statistics of the charge
carriers, be they bosons or fermions. From the scaling
law, we find that T-linear resistivity is obtained only if
the dynamical exponent z < 0, which is an unphysical
negative value. Consequently, no consistent account of
T-linear resistivity is possible if the quantum critical
modes carry the electrical charge. We conclude that either
the degrees of freedom that are responsible for the T-linear
resistivity in the cuprates are not undergoing a quantum
phase transition, or that quantum critical scenarios must
relinquish the simple single scale hypothesis to explain the
resistivity law in the cuprates.
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To proceed, we derive a general scaling form for the
conductivity near a quantum critical point. Consider a
general action S, the microscopic details of which are
unimportant. An externally applied electromagnetic vector
potential A�, � � 0; 1; . . . ; d, couples to the electrical
current, j�, so that

S ! S�
Z
d�ddxA�j�: (2)

The one-parameter scaling hypothesis in the context of
quantum systems is that spatial correlations in a volume
smaller than the correlation volume, �d, and temporal
correlations on a time scale shorter than �t / �z are small,
and space-time regions of size �d�t behave as independent
blocks. With this hypothesis in mind, we write the scaling
form for the singular part of the logarithm of the partition
function by counting the number of correlated volumes in
the whole system:

lnZ �
Ld�

�d�t
F���d�; fAi �

dAg�: (3)

In this expression, L is the system size, � � 1=kBT the
inverse temperature, � the distance from the critical point,
and d� and dA the scaling dimensions of the critical cou-
pling and vector potential, respectively. The variables
Ai � Ai�! �  ��1

t � correspond to the (uniform, k � 0)
electromagnetic vector potential at the scaled frequency
 � !�t, and i � 1; . . . ; d labels the spatial components.
Two derivatives of the logarithm of the partition function
with respect to the electromagnetic gauge Ai�!�,
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determine the conductivity for carriers with charge Q. We
have explicitly set � � 0 as our focus is the quantum
critical regime. At finite temperature, the time correlation
length is cut off by the temperature as �t / 1=T, and �t /
�z. The engineering dimension of the electromagnetic
gauge is unity �dA � 1�. Charge conservation prevents
the current operators from acquiring an anomalous dimen-
sion, hence, that dA � 1 is exact [14]. We then arrive at the
general scaling form

!�!; T� �
Q2

@
T�d�2�=z�

�
@!
kBT

�
(5)

for the conductivity where � is an explicit function only of
the ratio, !=T. (We have dropped the ij tensor indices for
simplicity.) This scaling form generalizes to finite T and !
the T � 0 frequency dependent critical conductivity origi-
nally obtained by Wen [14]. The generic scaling form,
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Eq. (5), is also in agreement with that proposed by Damle
and Sachdev [12] in their extensive study of collision-
dominated transport near a quantum critical point (see
also the scaling analysis in Ref. [15]). What the current
derivation lays plain is that regardless of the underlying
statistics or microscopic details of the Hamiltonian, be it
bosonic (as in the work of Damle and Sachdev [12]) or
otherwise, be it disordered or not, the general scaling form
of the conductivity is the same. A simple example where
such a scaling formula for the conductivity applies is the
Anderson metal-insulator transition in d � 2� #, which
can be thought of as a quantum phase transition where the
dimensionless disorder strength is the control parameter
[16,17].

In the dc limit,

!�! � 0� �
Q2

@
��0�

�
kBT
@c

�
�d�2�=z

: (6)

In general ��0� � 0 [18]. Else, the conductivity is deter-
mined entirely by the nonsingular and hence noncritical
part of the free energy. The cuprates are anisotropic 3-
dimensional systems. Hence, the relevant dimension for
the critical modes is d � 3 not d � 2. In the latter case, the
temperature prefactor is constant. For d � 3, we find that
T-linear resistivity obtains only if z � �1. Such a negative
value of z is unphysical as it implies that energy scales
diverge for long wavelength fluctuations at the critical
point. In fact, that the exponent of the temperature prefac-
tor in Eq. (5) is strictly positive is inconsistent with the
Drude formula for the conductivity. Consider the work of
van der Marel, et al. [9] in which a Drude form for the
conductivity,

!Drude �
1

4$

!2
pl�tr

1�!2�2tr
; (7)

was used to collapse their optical conductivity to a function
of !=T (!pl is the plasma frequency). Because �tr / 1=T,
the Drude form for the conductivity is consistent with the
critical scaling form for the conductivity, Eq. (5), only if
z � �1. The presence of another energy scale [19] in the
Drude formula, namely, the plasma frequency, is also at
odds with the scaling form in Eq. (5). On dimensional
grounds, the z � �1 result in the context of the Drude
formula is a consequence of compensating the square
power of the plasma frequency with powers of the tem-
perature so that the scaling form Eq. (5) is maintained.
Hence, data collapse according to the Drude formula is not
an indication that the universality which underlies the
scaling form of Eq. (5) is present.

A further indication that the standard picture of quantum
criticality fails for the cuprates is found in the application
of Eq. (6) to the universal scaling law of Homes et al. [20].
Throughout the entire phase diagram of the cuprates,
Homes et al. [20] have found the empirical relationship,

�s � !dc�T
�
c �Tc (8)
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between the superfluid density, �s, the superconducting
transition temperature, Tc, and the dc conductivity just
above Tc, !dc�T�

c �, holds within an accuracy of 5%. By
using the Drude formula for !dc and Tanner’s [21] empiri-
cal relationship between the superfluid and normal state
densities, namely, �s � �N=4, Zaanen [22] has shown that
Homes’s Law reduces to Eq. (1). That is, the charge
degrees of freedom in high Tc superconductors are at the
quantum limit of dissipation, referred to by Zaanen as the
Planckian limit. Such Planckian dissipators are necessarily
quantum critical. However, the conclusion that Homes’s
Law represents a simple statement about the quantum limit
of dissipation relies on the Drude formula, which, as we
have discussed, has nothing to do with quantum criticality.
To assess the relevance of quantum criticality to Homes’s
Law, it is more appropriate to use Eq. (6). Substituting
Eq. (6) into Eq. (8) results in a simple algebraic relation-
ship [23],

�s / T�d�2�=z�1
c (9)

between the superfluid density and Tc. Regardless of the
exponent, this expression has a maximum whenever Tc is
maximized and hence is reminiscent of the Uemura rela-
tionship [24], another empirical relationship valid only in
the underdoped regime. A key failure of the Uemura
relationship is optimal doping where �s and Tc are not
simultaneously maximized. Hence, we find that the form of
the dc conductivity dictated by quantum criticality fails to
capture the physics of Homes’s Law, an empirical obser-
vation valid regardless of doping. Perhaps some as of yet to
be discovered form of quantum criticality can explain
Homes’s law, but such an explanation must lie outside
the one-parameter scaling hypothesis.

The inability of Eq. (5) to lead to a consistent account of
T-linear resistivity or Homes’s Law [20] in the cuprates
leaves us with three options. (1) Either T-linear resistivity
is not due to quantum criticality, (2) additional noncritical
degrees of freedom are necessarily the charge carriers, or
(3) perhaps some new theory of quantum criticality can be
constructed in which the single-correlation length hypothe-
sis is relaxed. In a scenario involving noncritical degrees of
freedom, fermionic charge carriers in the normal state of
the cuprates could couple to a critical bosonic mode. Such
an account is similar to that in magnetic systems [3] in
which fermions scatter off massless bosonic density or spin
fluctuations and lead to an array of algebraic forms for the
resistivity [25] ranging from T4=3 to T3=2 in antiferromag-
netic and ferromagnetic systems, respectively. While dis-
order can alter the exponent [26], T-linear resistivity re-
sults only in a restricted parameter space. Consequently, in
the context of the cuprates, any explanation of T-linear
resistivity based on quantum criticality (as it is currently
formulated) must rely on the fortuitous presence of a
bosonic mode whose coupling to the fermions remains un-
changed up to a temperature of T � 1000 K. Currently, no
such mode which is strictly bosonic is known. This is not
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surprising in light of the fact that numerous experimental
systems exist [13] in which T-linear resistivity does not
occur in the quantum critical regime or T-linear resistivity
exists only at a single point rather than a funnel-shaped
region [10,11]. These experiments imply that the corre-
spondence between quantum criticality and T-linear resis-
tivity is not one of necessity.

What about new scenarios [27,28] for quantum critical
phenomena? For example, an additional length scale, as is
the case in deconfined quantum criticality [28], could
provide the flexibility needed to obtain T-linear resistivity
while still maintaining z > 0. A likely scenario is as fol-
lows. Entertain the possibility that an additional length
scale ~� is relevant which diverges as ~� / �a, with a > 1.
If in the calculation of the correlation volume entering
Eq. (3), one replaces �d with �d ! ‘d � �dh�~�=��, h�y� �
y� a general scaling function, then one is in essence
reducing the effective dimensionality such that d ! d� �
d�  �a� 1�. T-linear resistivity results now if z � 2�
d�. The reduction in the effective dimensionality,  �a� 1�,
can now be fine tuned so that d� 
 1, thereby resulting in
physically permissible values of the dynamical exponent,
z � 1. Nonetheless, such fine scripting of two length scales
is also without basis at this time.

Indeed, it is unclear what remedy is appropriate to
square single parameter scaling with T-linear resistivity
in the cuprates. It might turn out that quantum criticality is
not relevant to the problem. What is clear, however, is that
if T-linear resistivity is due to quantum criticality of the
degrees of freedom that carry the electrical charge, then a
consistent theory must be constructed to account for the
breakdown of one-parameter scaling. In fact, recent experi-
ments on La2CuO4 [29] find that the exponent of the
temperature prefactor of the magnetic susceptibility [29]
varies across the critical region. Perhaps this variation
provides further evidence that physics beyond the standard
paradigms is necessary to explain the magnetic and trans-
port properties of the cuprates.
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