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Population Inversion of a Driven Two-Level System in a Structureless Bath
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We derive a master equation for a driven double quantum dot damped by an unstructured phonon bath,
and calculate the spectral density. We find that bath-mediated photon absorption is important at relatively
strong driving, and may even dominate the dynamics, inducing population inversion of the double-dot
system. This phenomenon is consistent with recent experimental observations.
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Quantum dots are of great current interest due to their
controllability, their sensitivity to the quantum nature of
the phonon environment [1-3], and their potential appli-
cation to quantum-information processing [4]. Double-
quantum-dot systems, formed by depleting a 2D electron
gas down to a few conduction band electrons in two wells,
have shown coherent quantum phenomena [5,6].

For the last decade, sensitive electrometry has been able
to probe double-dot systems in the single electron regime
[7,8]. Microwave spectroscopy reveals peaks when the
double dot is resonant with a driving field, indicating
Rabi oscillation [6,9]. Similar phenomena have been seen
in driven superconducting systems [10—12].

In this Letter we study the interaction of a phonon bath
with a strongly driven double dot. Other work on driven,
dissipative two-level systems (2L.Ss) is reviewed in [13].
We begin by deriving a spin-boson model from micro-
scopic principles, from which we develop a master equa-
tion for the interaction between the double dot and an
unstructured phonon bath (i.e., one lacking resonances).
We analyze the model and find that at zero temperature and
nonresonant driving, phonon assisted photon absorption
becomes significant. The rate balance between this and
the ever-present phonon-induced relaxation results in an
increased occupation of the excited state.

We show that for strong cw-driving and subquadratic
spectral densities, there are regimes where bath-mediated
excitation dominates, leading to the surprising prediction
of a large steady-state population inversion in a 2LS. This
is consistent with recent experimental results [6,14].

While inversion is integral to lasers, three levels are
usually required. Inversion of nominal 2LSs has been
discussed for superconducting systems [15,16], Er-doped
glass fiber [17], and strongly driven atom-optical systems
[18-20]. These focus on structured spectral densities or
extremely strong driving in contrast with the mechanism
presented here, which requires only significant coupling to
the unstructured bath near the Rabi frequency.

Model. —We consider a periodically driven 2LS (a qu-
bit), modulating both bias and tunneling,
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H, = —(eo, + Ao,)/2
+ Qg cos(wo)[(cosd)o, + (sind)o, ],

where o, = |IXI| — |r)Xrl, and o, = |){r] + |r)I]. In
general, (), is proportional to the slowly varying elec-
tric field amplitude and the electric dipole moment. The
time independent part of H, is diagonalized in the en-
ergy eigenbasis, —@o?/2, where of = |g)gl — le) X
(e|l = (sinf)o, + (cosB)o., {lg), le)} = {sin(6/2)|r) +
cos(6/2)|1), cos(0/2)|r) — sin(6/2)|1)}, 6 = arctan(A/e),
and ¢ = €* + A%. We transform H, to a frame rotating
at the drive frequency according to e ~“0?/2_ and make a
rotating wave approximation (RWA), discarding terms ro-
tating at frequencies ¢ + wg > 7, ()

[:IRWA: _(770'§+Q‘7§)/2, (N

where 7 = ¢ — wy, O = Qysinf, § = 0 — 8, and the
tilde denotes the rotating basis. This Hamiltonian
is diagonalized in the dressed basis {|—), |+)} =
{cos(¢/2)lg) — sin(¢/2)le), sin(¢/2)|g) + cos(¢/2)le)}:
Hywa = —Q'ad?/2  where o¢ = |-X—| — |[+) X
(+| = sinpo? + cospo?, ¢ = arctan(Q/n) € [0, 7],
and Q/ = (Q2? + 9?)!/2 is the effective Rabi frequency.
Note that we work in units where H has dimension rad/s.

We include the influence of phonons, for which the bare
Hamiltonian is Hy, = an)qa:;aq. The electron-phonon
coupling is generically given by [21]

Ho g =Y iMy0(q)aq — aty), )
q

where 0(q) = ijj/[fd3r¢;(r)¢j/(r)e_iq’r]c}cj/ is the
Fourier transform of the electron density operator and
{l)} form a discrete basis. My = Cy(h/2uVwy)'/? is
the coupling strength, where w is the mass density, V is
the volume of the lattice and for piezoelectric coupling
Cq = P, while for deformation coupling, Cq = Dg, where
g = |q|. In the two-level approximation the electronic
subspace is spanned by the localized states {|L), |R)} sat-
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isfying (r|L) = ¢(r —d/2) and (r|R) = (r +d/2),
where d is displacement between dots. Evaluating the
integral in 0, we discard off-diagonal elements such as
My(L|@(r)|R), since both |M,| < ¢ and (L|R) < 1 so it
is doubly small [1,3]. The diagonal elements evaluate to
(LI6(Q)IL) = e~"44/2p(q) and (RIO(q)IR) = /2 p(q),
where  p(q) = [dr|¢(r)|?e™ 0", Therefore 0(q) =
p(q)[cos(q - d/2)l — isin(q - d/2)o ], which establishes
that phonons couple primarily to the position of the qubit.
For localized states confined to a region of length [, the
form factor p(q) = 1 for ¢ << 1/I. The term proportional
to [ just perturbs phonon energies, so

He—ph = a-zzgq(az; + aq)r (3)
q

where g, = Myp(q)sin(q - d/2)/+/V. The Hamiltonian
for the complete system is Ho, = Hrwa + Ho—pn + Hpp.
We now transform to an interaction picture defined with
respect t0 Hyee = Hrwa + Hpp, in which  ag(r) =
d i)t

aqe”'a" and o (t) = o4 ¥, Therefore

o.(1) = [cosf cose — sinf sing cos(w(t)]o?d
— [cos@ sing + sinf cosg cos(wyt)]ad(1)
— sinf sin(wr) (1), C))

= P e i@t + pt eio',
[0}
®'€{0,Q, 0y =0/, 0y}

where Py = cosfcospa?/2, Pg = —cosfsingpo?,
P, o = Fsinf(1 = cosp)o? /2, and P, = —sing X
singa?/2. Then, the interaction picture Hamiltonian is
H;(r) = a’z(t)zng(afiei“’qt + age”id).

Master equation.—To solve the dynamics of the qubit,
we develop a master equation for the qubit density matrix,
p. Following [22] we integrate the von Neumann equation
for the joint density matrix, W, of the total system, then
trace over phonon modes, resulting in

t
p10) = = [ e TeullH,0), L), WOTH - 5
We make a Born-Markov approximation, setting f, = —o0
and replacing W,(¢') — W,(r), which is valid for weak
coupling and rapid bath relaxation [22]. When w, and
(), appearing as rotating terms in H,(z), are much larger
than the phonon coupling strength, we make a second RWA
[23,24], giving the master equation

pr=>J(@)(N(@")+11D[P,Jp, + N(@)DIP},1p))

where J(w) = 27y |g41*6(@ — wg) is the spectral den-
sity, N(w) = (e®/%s” — 1)~! is the occupation of phonon
modes, and D[A]p = ApAt — (AtAp + pATA)/2. The
different operators P, are classified according to their
effect on the system: those proportional to o¢ produce
pure dephasing in the dressed basis, while those propor-
tional to o4 induce transitions between the dressed states.

The second RWA used to derive the master equation
implies that our analysis is valid only in certain limits.
First, the RWA made above is reasonable when w, )/ >
J(w') so we are considering strong driving and weak
coupling, where the Rabi frequency is larger than the
dissipation rate. Weak driving is discussed in [9]. This
implies that on resonance the dc conductance peak is
saturated; i.e., the average polarization of the qubit is
zero. Second, the RWA we have made limits analysis of
dynamics to times >> 1/0)'. In what follows we calculate
steady-state properties, so the RWA is not restrictive.

Setting  p(1) = [1 + x,()od + y ()a? + z,()5¢]/2
yields the equations of motion for the components of
the Bloch vector in the dressed basis, x;, = —[2I", +
- +Ty)/2]x; (and x;—y,) and 2, =T- —T}) -
(I'_ +I'y)z,, where

I, = (J(0)cos?Ocos? o[ N(0) + 1/2]/2
+ J(wg)sin?@sin® o[ N(wy) + 1/2])/2,
N(wy — Q) + 13!

- = J(wy — Q)sin?6(1 — cose) Z

4
N(wy + Q') +
+ J(wg + Q)sin?0(1 + cose)? (@g 2 )+ 3
+ J(Q)cos?@sin’ [ N(Q)) + (1 = 1)/2]. 6)

I', contributes to the dephasing rate, but not to transition
rates between dressed states. The three terms appearing in
I'; correspond to interactions with phonons of energies
wy = QO and Q. For kgT < Q, N =0 and the term
proportional to J(wy — {)') corresponds to a dressed-state
raising process, while the other two are dressed-state low-
ering processes, shown in Fig. 1(a). The steady state of the
Bloch vectoris x;, = y; =0and z;, = ' = I',)/(T"_ +
'), so z, is determined by the balance of the dressed-state
raising and lowering rates.

We now show that driving can induce population in-
version. For the purpose of discussion we take 7 = 0 and
€ >0, and we consider the dynamics below resonance
1 < 0. For clarity, we describe the most interesting limit,

(a) (b) T_ \
r, T_ ;
: o
]\ 2(1)()—(])_ \
o ‘g (D?u 1y r, go#:
@ —le)
I+)

’¢ o
=) _ng>-LL

FIG. 1. Energy level diagrams for dressed-state raising and
lowering processes in (a) the dressed basis and (b) the bare
eigenbasis, for n <0, where |—) = |e) and |+) = |g). Solid
arrows indicate photon absorption, and dotted arrows indicate
phonon emission. When |7 > Q, Q' = |9| = 0wy — ¢.
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|| > Q, in which the lower dressed state and the bare
excited state are approximately the same, | —) = |e). In this
limit, there is a population inversion wherever dressed-
state lowering processes dominate, I'_ > I',. In this limit
Q' = |y, sing = —R, and cos =~ —1 + R?/2, where R =
Q/Q. Thus wyg — Q' = ¢ and wy + Q' = 2wy — @, so

', = J(¢)sin6,
I'_ = J(Inl)cos?6R? + J2w, — ¢)sin’0R*/16.

Typically, I'_ < I", since the phonon density of states is
small at low energies, so J(|n]) < J(¢), and R* < 1 away
from resonance. However, the condition for inversion,
I'_>T,, can be met in certain regimes, namely, when
sin’@ is sufficiently small.

The terms in I'. may be understood physically from
Fig. 1(b), where the dressed-state raising and lowering
processes at rates I'.« are shown in the undriven eigenbasis.
In this picture, a dressed-state raising process corresponds
simply to phonon emission accompanied by relaxation of
the qubit. The phonon emission rate contributes the factor
J(¢) to T',, while the factor sin’6 is the dipole matrix
element for the phonon-induced transition. In the absence
of driving, this is the only significant process [23].

In the presence of driving, dressed-state lowering pro-
cesses also occur, due to absorption of either one or two
photons, accompanied by emission of a phonon of energy
O/ = || and 2w, — ¢, respectively. Both of these pro-
cesses contribute to I'_, and excite the 2LS. As in the
Jaynes-Cummings model of a driven atom [25], away
from resonance each photon absorption contributes a factor
R?, giving the factors R? and R*, respectively. Each photon
contribution already implicitly contains a dipole transition
matrix element. Phonon emission contributes factors
J(Iml) or JQwy — ¢), respectively.

Typically the two-photon process is very weak, so in-
version occurs when J(|n|)R?cos?0 > J(¢)sin6, i.e.,
when J(|n|)/J(¢$) > n’tan’0/Q2. Clearly, this inversion
condition is satisfied for sufficiently small » if J is sub-
quadratic [i.e., J(w) < aw?, for some a]. These findings
are our principle result. Later we show that inversion does
not depend on the limit 5| >> () above, which simply
leads to a useful physical interpretation.

The degree of inversion depends on the relative size of
J(Im]) and J(¢), as well as the temperature. As T increases,
the phonon modes become thermally occupied, so when
k,T = ) the thermally-activated, dressed-state raising
process becomes significant. This is the inverse of the
second process depicted in Figs. 1(a) and 1(b), where
relaxation of the qubit from |e) to |g) is accompanied by
stimulated emission of a photon, reducing the inversion.

We now show that the condition J(w) < aw? is satisfied
for piezoelectric phonon coupling (approximately constant
or Ohmic, depending on phonon dimensionality), and that
this is stronger than deformation coupling. If the spectral
density were strongly peaked, e.g., due to a discrete pho-

non spectrum, then the two-photon process may become
significant, analogous to [15].

The spectral density J(w) varies significantly over the
frequency ranges of interest and depends on both the
dimension of the phonon bath and the nature of the cou-
pling to acoustic phonons, either deformation or piezoelec-
tric. We assume the phonon bath is either two or three
dimensional, isotropic, and dispersionless (wq = c,¢), and
the results are summarized in Table I. Coupling of GaAs
double dots to phonons has been observed in transport
measurements [3], where it was found that spontaneous
emission rates are dominated by piezoelectric coupling,
with the effective dimension dependent on the qubit split-
ting. The angular form factor, F, that appears in the 2D
spectral densities behaves qualitatively like the corre-
sponding factor 1 — sincx in the 3D version. Other effects
of phonon coupling to GaAs dots are discussed in [1,26].

To quantify the phonon-induced decoherence rates, we
estimate the characteristic time scales 7p = 27w} /Dw}
and 7p = 27Twp/Pw0 for 3D phonons, from Table I.
For GaAs, hD =137¢V, hP=145eV/nm, u =
5300 kg/m?, ¢, = 5200 m/s [27], and we take d =
500 nm, wy/27 = 24 GHz [6], so AP = 2.3 u eV, hD =
33 neV, and wy/w, =2.3. Then 7p = 10 ns and 7p =
760 ps, so piezoelectric coupling dominates, in agreement
with experiment [3,5,6].

The variation in the dc response of an electrometer is
proportional to the time-averaged expectation of the
double-dot polarization, 7 [23,24,28]. From Eq. (4) we
find z = (o,) = (cosf)(cos¢)z,. For weak driving, 7 =
€/¢ away from resonance, while on resonance (1 = 0)
Z =20, so there is a resonant peak in the electrometer
response [6,9]. When |e| > A, the eigenstates are approxi-
mately localized, e.g., for € > A > 0, we have |g) = |I),
so inversion corresponds closely to localization in |r).

Using the rates in Eq. (6), Fig. 2(a) shows the left dot
occupation, M = (1 + z)/2, versus bias, €, for different
driving amplitudes, (), assuming 3D piezoelectric cou-
pling. We focus on € > 0, since the opposite regime is the
same (up to reflections). There is clear population inver-
sion, where M crosses 0.5. There are several points to note
from this figure. First, the population at resonance always
remains at 0.5. When resonance is approached, the dressed

TABLE 1. Spectral density, J(w), for deformation and piezo-
electric coupling in isotropic 2D and 3D media, assuming
p(q) = 1. D and P are the deformation and piezoelectric con-
stants, d = |d|, c, is the speed of sound, u, is the areal mass
density, u is the volumetric density, D = 272D?*h/uc2d®, P =
P’h/2ucid, and w, = 2mc,/d is the angular frequency of
wavelength-matched phonons.

Deformation Piezoelectric
2D TP - L2m])  Pa (- d2re)
3D D(2)*(1 — sinc[27-2]) P2 (1 — sinc[27-2])
P P P P
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FIG. 2 (color online). (a) Occupation of left dot, M, for in-
creasing Rabi frequency from )y = 0.0lw, to 0.17w in steps
of 0.02w,. Other parameters are w, = 0.2w) = A, kgT =
0.05w,, and 8 = /2 corresponding to driving the tunneling
rate. (b) Increasing temperature from k37 = 0 to 0.3w in steps
of 0.06w,. As above, w, = 0.2wy = A while () = 0.16w,.

states have equal time-averaged projections onto the local-
ized states, as the qubit performs Rabi oscillations through
the poles of the Bloch sphere. Hence the average polariza-
tion vanishes. Second, the peak in the conductance shifts to
lower energies, as the photon absorption probability R>
increases with increasing driving. Both of these features
are consistent with recent experimental observations [14].
Finally, the ripples superimposed on the peak are due to the
structure of the spectral density, and are spaced by approxi-
mately w,. The prominence of the ripples follows from
neglecting anisotropy in the piezoelectric coupling and c;.
In practice, anisotropy in ¢, (as in GaAs) should suppress
the ripples.

The inversion becomes more pronounced for a 2D
piezoelectric coupling, since the spectral density for this
case tends towards a constant for @ > w,. Transport stud-
ies of a similar system suggest that the actual phonon
coupling is intermediate between 2D and 3D [3], so it is
plausible that experimental results will find a more pro-
nounced inversion than that shown above.

In Fig. 2(b) we show the dependence of M on tempera-
ture. Clearly the resonance is suppressed, and the average
occupation tends to 50%, as expected. Also, as T increases,
the peak moves towards smaller €. As discussed above, this
occurs because when kzT = (), the thermally activated
dressed-state raising process (corresponding to relaxation
from |e) to |g)) becomes significant, which reduces the
inversion. Since ()’ increases with detuning, the inversion
is more robust further from the resonance condition. This
temperature dependence of the peak, along with its depen-
dence on driving strength, is a signature of the population
inversion discussed here.

Since we are considering a regime of relatively strong
driving, it is natural to ask whether higher order driving
terms are significant. Such terms produce harmonic reso-
nances, and have been seen experimentally [6,14]. There
are two origins of harmonic resonances in this kind of
system: first, at sufficiently high intensity, multiphoton
processes may become important. Second, nonlinearity in
the coupling of A to the driving voltage, V(¢), will produce
harmonics of @, which can drive Rabi oscillations. While

these effects will produce features at ¢ = mw,, unless
QO ~ wq [29], they will not significantly affect the system
near the fundamental frequency.

In conclusion, we have shown that population inversion
is possible for a driven, dissipative 2LS with subquadratic
spectral density, consistent with recent experimental ob-
servations. The inversion grows as the driving increases,
and the maximum inversion moves to lower energies as
both driving amplitude and temperature increase. This
phenomenon is quite generic for physically reasonable
systems, and does not rely on any specific structure in
the spectral density.
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