PRL 95, 106104 (2005)

PHYSICAL REVIEW LETTERS

week ending
2 SEPTEMBER 2005

When Smoothening Makes It Rough: Unhindered Step-Edge Diffusion
and the Meandering Instability on Metal Surfaces

F. Nita'? and A. Pimpinelli'

'LASMEA, UMR 6602 CNRS, Université Blaise Pascal—Clermont 2, F-63177 Aubiére Cédex, France
2Institute of Physical Chemistry “IG Murgulescu” of Romanian Academy, Splaiul Independentei 202, Bucharest, Romania
(Received 19 May 2004; published 2 September 2005)

The precise microscopic origin of step meandering is not known in many real situations. A detailed
study of this instability has been made for copper, and none of the microscopic mechanisms proposed until
now is able to describe all of the observed characteristic features of the instability, in particular, its
dependence on the crystallographic orientations of steps. We propose a novel scenario, and using kinetic
Monte Carlo simulations we show that essentially all features of step meandering of copper can be
explained, if atoms diffuse along step edges and freely turn around the kinks they encounter along the
ledge. Then, in a rather counterintuitive way, step meandering appears due to the very mechanism—step-

edge diffusion—that may be expected to oppose it.
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Introduction. The step meandering instability. —Sponta-
neous patterning is a well known phenomenon in systems
far from equilibrium [1,2]. Patterns may appear because of
an external driving force, such as the ripples on the surface
[3] of sand blown by the wind or the ripples at the surface
of a silicon wafer heated by a direct current, or because of
intrinsic effects, such as the ripples, ridges, and channels
formed on vicinal crystal surfaces during deposition of
atoms by a beam [4]. Spontaneous patterning of crystal
surfaces appears to be one of the most promising ways of
structuring a whole substrate at nanometric length scales. It
is therefore of capital importance to gain a detailed under-
standing of the microscopic, atomistic mechanisms leading
to spontaneous surface patterning. The present Letter ad-
dresses the self-structuring of vicinal crystal surfaces
growing by step-flow. We show here that step-edge diffu-
sion of atoms, instead of smoothing the step shape, as in-
tuition suggests, induces a morphological instability that
leads to a macroscopic patterning of the surface.

Growth instabilities of vicinal surfaces.—A vicinal crys-
tal surface is made of atomic planes or terraces separated
by steps of atomic height. The steps break the surface
symmetry and may induce growth instability when the
surface is brought out of equilibrium, e.g., during atom
deposition and growth. Step-flow [5] is the growth mode in
which adatoms are deposited by a beam on the surface and
diffuse directly to the steps without nucleating islands on
terraces. In several systems, either metals like Cu [4] or
semiconductors like Si [6] and GaAs [7], it is observed that
growth by step-flow proceeds in an unstable way. The steps
that are straight and equidistant on average before starting
the growth, upon deposition of atoms onto the surface do
not keep their straight shape, but start wandering over the
terraces. This growth instability is the precursor of the self-
organization at long times of the step train into a structure
made of ripples running along the direction of the surface
slope [4,6,7].
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Step meandering: The theoretical framework.—Bales
and Zangwill (BZ) [8] assumed that diffusing adatoms
experience an additional energy barrier, known as the
(2D) Ehrlich-Schwoebel (ES) barrier [9—-11], when jump-
ing down a step. BZ showed that the existence of an ES
barrier implies that the straight step shape is unstable
during step-flow growth, and that the steps meander in
phase. The competition between the ES barrier and
smoothening effects (atom detachment from the step-
edge, or step-edge diffusion) yields a pattern of meanders
with a typical period Agz scaling as the inverse square root
of the deposition rate F, Agz ~ F~'/2. The step shape
instability due to an ES barrier is called here the BZ
meandering. More recently, Ramana Murty and Cooper
[12] have observed in kinetic Monte Carlo (KMC) simu-
lations and Pierre-Louis and co-workers [13] have shown
analytically that atom diffusion along step edges may also
be responsible for step meandering, if a 1D ES barrier for
turning around corners along the ledge is assumed. Indeed,
for an atom diffusing along the step edge, turning around a
corner is the analog of going over a step, and a (1D) ES
barrier may be expected in that case also (Fig. 1). Such a
barrier at kinks that is assumed to hinder corner rounding
gives rise to what is called a kink ES effect, or KESE. We
call the barrier Exgsg. The resulting step meandering is
often called the KESE-induced meandering. The typical
period of the meander pattern is set by the nucleation of 1D
“islands” along the step edge [13]. This yields Aggsg ~
F~!/4_The simultaneous presence and the competition of a
2D ES barrier and of 1D KESE has been investigated by
Kallunki and co-workers [14], who found that the KESE
meandering always overcomes the BZ meandering, unless
the 2D ES barrier is very high. A very interesting feature of
the KESE-induced meandering is its dependence on the
crystallographic orientation of the steps [13]. Meandering
is expected to occur for compact, closed-packed steps, but
not for open ones. This expectation has been confirmed by
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FIG. 1. Schematics of the atomistic moves in the USED model
for closed-packed (top) and open (bottom) steps. Atoms diffuse
on terraces (a) and along the step edge (b). Detachment from
steps is forbidden. Corner rounding (c) occurs at the same rate as
in (b). Atoms bound to kinks (d) are immobile.

KMC simulations of a “realistic’’ model for copper [15].
Indeed, a strong KESE is expected on copper surfaces,
where Exggg has been estimated to be Exgsg = 0.45 eV, to
be compared to a surface diffusion barrier E; = 0.4 eV.
KMC simulations based on such realistic parameters pre-
dict that compact steps should meander, but open steps
should not. As we recall in the following, this is at variance
with experiments.

The experiments.—The question naturally arises
whether real systems fit in any of the theoretical expecta-
tions. The most detailed study of a meandering instability
has been performed by Ernst and co-workers on vicinals of
Cu(100) [4,16]. The main results of this study are the
following: (i) Both compact ([110]) and open ([100]) steps
undergo a meandering instability, with very similar quan-
titative features; in particular, (ii) The wavelength of the
pattern varies as Aq, ~ F~ %1702 in both cases. Result (i)
does not fit in with the KESE scenario. Result (ii) does not
fit in with the BZ scenario. We provide a novel scenario
that agrees with experimental observations (i) and (ii).
Surprisingly, the scenario we propose requires the absence
of any ES barriers. Assuming symmetric attachment at
steps, and unhindered diffusion of atoms along step edges,
we prove with KMC simulations that step meandering
appears, in much the same way as observed on copper.

Unhindered step-edge diffusion.—Preferential atomic
diffusion along step edges is an essential ingredient of
the description of step-flow growth of metal surfaces vici-
nal of the {100} orientations. The atoms attached to a
compact [110] step edge are able to diffuse along the ledge
without detachment even at very low temperatures.
Because of the smoothing effect of step-edge diffusion,
atomic islands on (100) terraces of metals are never fractal.
However, during step-flow growth step-edge diffusion
plays a different role. It makes the step smooth on short
length scales, but it creates meandering on a larger scale.
We present in this Letter strong evidence that step mean-
dering on copper is a consequence of essentially unhin-
dered step-edge diffusion, i.e., diffusion of atoms along the
ledge with a vanishing or an extremely small KESE.

The physical origin of the destabilizing effect of step-
edge diffusion is rather subtle. Consider, as sketched in

Fig. 1(a), a nonstraight, compact step. Once attached to the
step edge, atoms diffuse towards kinks. If atoms can easily
“turn around corners,” that is, if a vanishingly small KES
barrier is present, the atoms stick to kinks at the same rate
from the front and from behind. The average diffusion
current has by symmetry a vanishing component parallel
to the average step direction, but sticking to kinks from
behind, that is by turning around a corner, yields a non-
vanishing, uphill component perpendicular to the average
step direction (Fig. 1). An uphill current is the signature of
a linear instability with respect to step meandering. We
conclude that compact steps are unstable with respect to
meandering if unhindered step-edge diffusion is active.
Consider now Fig. 1(b). Along an open step edge, kinks
are separated by portions of compact steps, along which
atoms diffuse. In the absence of KESE, diffusion to kinks
along these compact parts, which form an angle of 45°
with respect to the step direction, yields a net nonvanishing
uphill current that leads to the instability. When KESE is
active, it tends to equalize the distance between kinks
[10,11], and thus to make the step straight.

In conclusion, we claim that step-flow with unhindered
step-edge atomic diffusion is able to lead to a step mean-
dering instability, independently of the orientation of the
steps. To check the expectation, we have performed KMC
simulations of a simple model of step-flow growth with
unhindered step-edge diffusion, which we call the USED
model in the following.

Unhindered step-edge diffusion and step meandering. —
A schematic representation of the key microscopic pro-
cesses defining the USED model is shown in Fig. 1. In
short, the USED model works as follows: atoms diffuse on
the terraces between steps with a diffusion barrier coeffi-
cient D = Dyexp(—E;/kgT), where E, is the diffusion
barrier. When adatoms stick to a step, they do not detach
any more. We call them stepatoms. The stepatoms diffuse
along the straight step edge with a diffusion coefficient
Dgep = Do exp(—Ege,/kgT), where the barrier Eg, =
E; + E,. E, may be either positive or negative. If a ste-
patom binds to a kink, it stops moving. If a diffusing
stepatom comes to a cornet, it can cross it by making a
next-nearest neighbor hop, with the same diffusion barrier
Eg.p as for nearest-neighbor hops along the ledge. The
same prefactor D is assumed for diffusion on terraces and
along step edges, for simplicity. The model clearly violates
detailed balance, and is therefore meaningful only at low
enough temperature. The same model has been investi-
gated by Ramana Murty and Cooper, who have shown
that it possesses, indeed, an uphill current and that layer-
by-layer growth is superseded by mounded growth on
singular, high-symmetry surfaces. We simulate vicinal sur-
faces on a SC lattice of size 400 X 400 lattice spacings for
compact [100] steps, and 840 X 841 for open [110] steps.
We have chosen E; = 0.4 eV, a value close to that ex-
pected for copper, the additional edge diffusion energy
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FIG. 2. Snapshots of the simulated surfaces for compact (a)
and open (b) steps with Exgsg = 0, showing the surface insta-
bility after depositing 500 MLs. Deposition parameters are T =
340 K, F = 1073 ML/s.

E, = 0.12 eV, and the prefactor D, = 10'! s~!. The re-
sulting energy barrier for step-edge diffusion, Eg., =
0.52 eV, is not far from the value experimentally deduced
for straight compact steps on copper. We have then varied
the terrace width d between 5 and 20 lattice spacings, the
deposition rate between 10™# and 1 monolayer/s (ML/s),
and the temperature between 300 and 340 K. A sample of
the results of the simulations is shown in Fig. 2(a) for
compact steps (d = 5) and in Fig. 2(b) for open steps (d =
15.5). The temperature and deposition rate are 7 = 340 K
and F = 1073 ML/s, respectively, and 500 MLs have been
deposited. At this deposition rate and temperature, both
compact and open steps are clearly unstable, even though
only open steps [Fig. 2(b)] self-organize at late times in
fingerlike structures, as observed experimentally.
Moreover, open steps have a zigzag shape that resembles
strongly that of the steps on a Cu(0 1 12) surface. The
instability of the vicinal surface with compact steps is
enhanced for higher deposition rates, leading to a more
moundlike structure. The unstable behavior is less pro-
nounced the larger the terraces. The instability of open
steps survives very tiny KES barriers [Exgsg = E;/40 in
Fig. 3(a)], but it disappears when Eggpsg becomes of the
order of a tenth of E; [Fig. 3(b)]. Thus, the USED model
clearly shows that in the absence of any ES barrier, or at
most for very small barriers, both types of steps exhibit a
meandering instability, as we claimed. This is the main
result of our work: unhindered step-edge diffusion does not
smoothen a step, but makes it unstable, irrespective of the

FIG. 3. Snapshots of the simulated surfaces with open steps,
for the same parameters as in Fig. 2. The instability is well
pronounced when Exgsg = 0.01 eV (a), but it disappears alto-
gether for Exgsg = 0.04 eV (b).

FIG. 4. Snapshot of the simulated surface with compact steps,
for the same parameters as in Figs. 2 and 3, and Exgsg =
0.01 eV. Self-organization in fingerlike structures is clearly
observed.

crystallographic orientation of the step. ES barriers are not
needed for the appearance of a meandering instability. As
expected, a large kink rounding barrier enhances the in-
stability for compact steps, but kills it for open steps.

A detailed understanding of the step morphology would
require a continuum description of the evolution of the
instability. We can try to guess the main terms that should
appear in a continuum equation for the step evolution, on
the basis of phenomenological arguments. For both com-
pact and open steps, the instability appears only if the local
step slope is nonvanishing. At first order, we can guess that
the nonequilibrium current will be proportional to the local
step slope itself. As is known from the work of Politi and
Villain [2], nucleation noise and diffusion noise yield
smoothing currents of Mullins-like form [17], i.e., propor-
tional to the Laplacian of the local interface slope. Overall,
we can conjecture that the step shape evolution will be
described by a linear equation of the form dh/ot =
—vV2h + KV*h, whose first term on the right side comes
from the uphill current, and is responsible for unstable
growth (v > 0), while the second is a smoothing contribu-
tion from random nucleation and/or diffusion. Krug and
Rost [18] have discussed the scaling behavior of a linear,
unstable equation of this form. They found that the inter-
face width has an unusual scaling behavior, with an ex-
ponential asymptotic increase at long times.

To check the preceding guess, we have computed the
height difference correlation function G(x, ) = ((z(x, t) —
z(0, 1)]?) along the direction parallel to the steps, x. The
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FIG. 5. Meander wavelength A as a function of the deposition
rate F (a) and the temperature dependence of the meandering
wavelength (b), for compact (squares) and open (circles) steps,
for Exgsg = 0. Both lengths are in units of the square lattice
spacing. Fixed parameter values are as in the previous figures.
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FIG. 6. Uphill diffusion current as a function of the surface
slope m = d~! for compact (squares) and open (circles) steps.
The uphill current was calculated up to total coverage 6 =
0.1 ML at 300 K for Exgsg = 0.

definition implies averaging along y, perpendicular to the
steps. The computed correlation function (not shown) ex-
hibits, indeed, a scaling form G(x, t) = t*£ exp(2t/7) X
g(x/&), which appears to corroborate our guess. A more
detailed study of correlations in the USED model will be
published elsewhere.

The USED model and copper.—Comparison of our
simulated surfaces with published pictures of open copper
steps clearly shows that the USED model captures many
fine details of the actual morphologies. Adding a very
small KES barrier [Fig. 3(a)], the morphology is even
more resemblant. The same Eyxgsg = 0.01 eV makes the
simulated compact steps look exactly like Cu(1 1 17) steps
(Fig. 4). The level of description of unstable copper sur-
faces with the USED model is not only qualitative: we have
investigated the dependence of the meander period A with
a varying deposition rate F. Experimentally, a power law of
the form A ~ F¢ is found. As shown in Fig. 5(a), our
results for the power « are in good quantitative agreement
with experiments. The absolute values of the simulated
wavelengths exceeds the experimental ones by a factor of
3 at most, but no effort has been made in our simulations of
best fitting the experimental results. Figure 5(b) shows the
behaviors of the period of the pattern as the growth tem-
perature is varied. Note that the precise mechanism that
fixes the unstable wavelength A in the USED model is still
unknown. Nucleation along the step ledge is definitely
ruled out, as shown in Fig. 5. Work is in progress on this
point and will be reported elsewhere.

The explanation of the origin of the meandering insta-
bility in the USED scenario is the same as for the KESE—
an uphill current is induced, which makes the surface
unstable towards meandering. We computed the uphill
current for both open and closed-packed steps as the au-
thors in Ref. [11] did. The results show clearly that even in
the absence of any KESE, the uphill current is still there,
and so the instability, as observed (Fig. 6).

The main objection to the adequacy of the USED model
for copper is the rather large value of the KES barrier along

Cu step edges indirectly estimated from measurements of
step fluctuations [4], and previously used in studies of the
meandering instability of copper [15]. We stress again that
a large KESE is at variance with the observed instability of
open steps. Step fluctuations in the framework of the
USED model will be investigated.

Conclusion.—The USED model provides a novel sce-
nario for understanding the onset and the development of
the self-organized meandering on copper vicinal surfaces,
for both open and compact steps. It is at present the only
model that is able to describe both qualitatively and quan-
titatively the main experimental features observed on cop-
per surfaces. The key mechanism responsible for the
instability is identified with unhindered step-edge diffu-
sion, even though this is very surprising at first sight,
because diffusion along the step edge is just the physical
process that is expected to make the steps smoother. The
simulations show that KES barriers may play only a minor
role in the instability, and we estimate that their actual
value for copper must be extremely small (of the order of
10 meV).
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