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Velocity and Strain-Rate Profiles in Materials Subjected to Unlubricated Sliding
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This Letter focuses on the plastic response of a material, treated as a fluid, when subjected to sliding
interactions. The analysis couples momentum conservation with material flow laws to predict velocity and
strain-rate profiles that develop during sliding. The profiles depend on the strain-rate sensitivity. The
spatial extent of the deformed zone is determined by strain-rate sensitivity, strength parameters, and the
imposed sliding velocity.
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FIG. 1. Schematic showing velocity profile (bold) superim-
posed on sliding geometry consisting of two semi-infinite
blocks. (a) Initially, blocks move rigidly at �U with a sharp
sliding interface. (b) Later, the interface becomes diffuse and a
velocity profile evolves.
Materials in sliding contact develop large plastic strains
and large strain gradients adjacent to the sliding interface.
This statement is supported experimentally by observa-
tions of surface flow patterns, changes in microstructure,
and displacement of markers [1]. Plastic shear strains in the
range 10–1000 have been reported [1,2]. Knowledge of
strain-rate and strain profiles helps to define not only the
region in which most of the deformation occurs, but also
the rate of energy dissipation and the friction force. The
extent of the plastic zone ranges from the nanoscale to the
macroscopic. Flow patterns deduced from marker dis-
placements are similar for a wide range of structures and
size scales. These observations suggest that a generic
approach, independent of mechanistic deformation details,
may be helpful in understanding sliding behavior. A pos-
sible approach is to compare the plastic flow of material
adjacent to the sliding interface with the response of a fluid
when velocity gradients are imposed. Depending on the
materials combination and test environment, significant
changes in local chemical composition have also been
observed. Composition changes are consistent with a
mechanism involving mechanical mixing associated with
plastic flow [1]. Recent molecular dynamics (MD) simu-
lations reveal the formation of vortices in the vicinity of the
sliding interface. It has also been observed that convective
material transport and mechanical mixing is most pro-
nounced in the same region where vorticity is highest
[1,3,4]. Here again, the situation is reminiscent of fluid
flow, for which the well-known Kelvin-Helmholtz insta-
bility leads to the formation of eddies [5,6].

This Letter focuses on the response of a block of mate-
rial when it flows past an identical block with a finite
relative velocity. Despite the experimental evidence for
developing strain and strain-rate profiles, little work has
been done to model these analytically, hence the poor
theoretical understanding of friction and flow. This analy-
sis attempts to address this knowledge gap in the area of
tribology by applying momentum balance equations and
material constitutive laws to predict the velocity profile
that develops during sliding. Strain rate is derived from the
velocity profile. The uses and limitations of these exact
solutions are discussed in the context of plastic deforma-
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tion, friction, and microstructure evolution. The broad
applicability of the analysis to analogous shearing phe-
nomena, as in shear bands and explosive welding, is also
explored.

Two identical materials moving at equal and opposite
velocities of �U along the x axis are brought into contact
(Fig. 1). The flow is one dimensional and symmetric about
the flat sliding interface (y � 0). Initial conditions are such
that the velocity profile u�y� across the interface is a step
function. Assuming that the initial interface is infinitely
thin, there is an infinite spike in shear strain rate and
vorticity at the interface (zero elsewhere). This initial
condition is a state of shear instability known as Kelvin-
Helmholtz instability [5,6]. This leads to the development
of a velocity profile that is a monotonic and continuous
function of y and that satisfies the following boundary
conditions (BCs): u � �U at y � �1; u � 0 at y � 0
(no slip); dudy � 0 at y � �1.
1-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.106001


PRL 95, 106001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005
Assuming that frictional dissipation is associated pri-
marily with plastic deformation and using variational cal-
culus with the concept of virtual power, it can be
demonstrated that the interface spreads and plastic defor-
mation continues to extend into the material. This implies
that unless the material is inhomogeneous or softens lo-
cally, e.g., via structural and thermal effects, there is no
steady-state velocity profile. However, by using a partial
differential equation (PDE) to describe local momentum
balance and by treating the solid as an incompressible fluid
with constant properties, the velocity profile can be calcu-
lated. In the absence of pressure gradients and body forces,
Cauchy’s equation of motion for this flow geometry is

@u
@t
�

1

�
@
@y
��xy�; (1)

where �xy is the shear stress. The variation of density, �,
across the interface is expected to be small and is ne-
glected. By assuming a material flow law such as the
Herschel-Bulkley model [7],
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where �0 and C are strength parameters, m is strain-rate
sensitivity (0 � m � 1), and @u

@y is shear strain rate. The
PDE (1) can be transformed into an ordinary differential
equation (ODE) in one variable, by making an appropriate
substitution such as

� � yt�; where � � 	�1�m�	1: (3)

Using Eqs. (1)–(3) and the chain rule, one gets
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By substituting the value of� from Eq. (3), the t terms in
Eq. (4) can be eliminated, giving an ODE in �, which on
simplification gives
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Integrating Eq. (5) twice, we obtain
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2F1�a; bjcjw� is a Gauss hypergeometric function with
parameters a, b, c, and w. K1 and K2 are constants of
integration to be evaluated using the BCs. From the BC at
y � 0, K2 � 0. A linear transformation [8],
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may be applied to Eq. (6) such that
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where � � ��2K1 � �2�	1=2. At y � �1, yt� � � �
�1 and � � �1, and it can be shown [8] that
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where ���� is the gamma function of variable, �.
Combining Eqs. (8) and (9) and the BC at y � �1, gives
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Combining Eqs. (9) and (10) yields the velocity profile
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Equation (11) represents the normalized velocity un as a
function of ‘‘normalized �,’’ �. The hypergeometric func-
tion is a series solution and the exact functional form
depends on m, the strain-rate sensitivity of the material,
which in turn depends on temperature and strain rate. For
many metals, m � 0:2 [9]. For plastics and amorphous
materials, m is typically close to unity [10,11]. For special
values of m, the hypergeometric function assumes simpler
functional forms. The specific functional form in
Newtonian fluids and in ideal (Bingham) plastic flow, for
which m � 1, is the error function solution, and this result
is well known in the fluid mechanics literature. For crys-
talline solids with smaller m values, specific functional
forms include u � 2U

� arctan� yt
	1������
2K1

p � for m � 0 and u �

Uyt	3=4�2K1 � y2t	3=2�	1=2 for m � 1=3. Normalized ve-
locity profiles from Eq. (11) are shown in Fig. 2(a) for
selected m values in the range 0 � m � 1. The profiles in
Fig. 2(a) do not correspond to actual velocity profiles
owing to the present normalization scheme wherein y �
�1 in real length units corresponds to � � �1 in the
normalized scale. The normalized velocity profile for
OFHC copper, for which flow parameters are known
[12], is indicated in Fig. 2(b) for different sliding veloc-
ities. The strain-rate profile, dudy , is indicated in Fig. 3 at
different times and for different sliding velocities. The
spreading of the deformed zone is evident in Fig. 3(a). If
m were to stay constant during the course of sliding, the
developing flow during sliding would be ‘‘self-preserving’’
such that the velocity profile at any time would retain the
same functional form while merely changing transverse
length scales. It is interesting to note that the results
suggest that the rate of spreading of the deformed zone is
determined by � and K1. If a characteristic width, y, is
defined for the extent of plastic deformation, then ifm � 1,
1-2



FIG. 2 (color online). (a) Normalized
velocity profiles as functions of � for
selected values of m. Profile shapes are
due to the normalization scheme; the
linear dependence for m � 0:33 is also
a consequence of this. (b) Normalized
velocity profiles for different sliding ve-
locities (t � 1 s). Flow parameters for
OFHC copper [12]: C � 231 MPa � sm

and m � 0:0153. Note that the large
length scales result from the infinite sys-
tem size.
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y / t1=2. This is consistent with a result from MD simu-
lations of sliding of a simple amorphous material [13].
However, if m � 0, as is almost the case for many metals,
then y / t. As seen in Figs. 2(b) and 3(b) the model
suggests that increasing the sliding velocity U results in a
smaller value of K1, and this leads to localization of
deformation. By interrupting sliding experiments at differ-
ent times and by characterizing the width of the deformed
zone one could test these predictions.

Displacement and strain profiles may be obtained by
integrating the velocity and strain-rate profiles, respect-
ively, over time. Preliminary results suggest that the form
of measured displacement profiles previously character-
ized in longitudinal cross sections of worn samples [14]
compare favorably with the predictions made here. The
utility of strain-rate profiles extends to the prediction of
transient friction behavior if friction arises mainly from
plastic dissipation. This depends on both the strain-rate
profile and the associated shear stresses, which in turn
depend on shear strain rate via Eq. (2). A transient strain-
rate thus leads to transient friction behavior. The friction
force drops with time for 0 � m � 1, the time dependence
depending on the exact value of m. Experimental observa-
tions of similar transient friction behavior lend support to
the approach taken here.

In real friction experiments, however, it is often ob-
served that the friction force ceases to drop continuously
and approaches a ‘‘steady-state’’ value. At steady state, the
rate of dissipation and the velocity profile are time invari-
ant. In ideal homogeneous fluids that retain their properties
over the course of sliding, such steady state is impossible.
However, a steady state is possible in real materials since
they tend to develop property gradients for thermal and/or
structural reasons. Plastic deformation, being a dissipative
process, leads to temperature increase. This, in turn, leads
to an increase in the strain-rate sensitivity, thermal soften-
ing of material adjacent to the sliding interface and local-
ization of deformation. A balance between localization and
spreading leads to steady-state velocity and temperature
profiles. The evolution of the velocity profile thus depends
on the evolution of temperature-dependent material
properties.

Besides temperature, strain hardening (or softening)
during sliding is another probable cause of property gra-
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dients. Unlike perfect fluids, the flow stress in most solids
is not only a function of strain rate, but also of strain and
strain path. Plastic strain is largest close to the sliding
interface and continuously decreases away from the inter-
face. In metals, this is structurally manifested in the form
of a nanoscale ‘‘tribolayer’’ near the interface and defor-
mation substructure, with a coarsening size scale, away
from the interface [1,2]. Amorphous materials are struc-
turally characterized by decreased density associated with
increased free volume closer to the interface [13,15]. Such
gradients in structure lead to gradients in flow properties.
Higher strains in metals are typically characterized by
smaller subgrains and higher flow stresses. In addition,
finer substructures usually deform with larger strain-rate
sensitivities [16–18].

The symmetric solutions presented here were derived for
self-mated sliding pairs. When two dissimilar materials are
brought into contact, the resulting profiles are expected to
be asymmetric. In such cases, the density difference across
the interface cannot be neglected. Moreover, mixing of
components across the interface has been observed and
simulated in real sliding situations [13,19], and this could
contribute to spatial and temporal variations of material
properties. In this Letter, development of property profiles
is neglected and no attempt is made to predict steady-state
velocity profiles. However, nontrivial solutions ought to
exist since velocity profiles depend on structure and tem-
perature, which are state variables.

This model ignores the presence of asperities by assum-
ing flat sliding interfaces. Also, it was implicitly assumed
that the entire material is free to deform plastically,
whereas most solids have well defined elastic limits below
which they do not undergo permanent deformation.
Dependence of yield stress on strain and strain path, in-
corporation of property profiles, finite boundary condi-
tions, and the contribution of normal load to the yield
criterion are among the topics worth addressing in subse-
quent model refinements. For such complicated cases, the
use of numerical techniques will be more efficient and
perhaps necessary. However, the exact solution derived
here retains the advantage of serving as a benchmark for
testing the convergence of numerical solutions. It also
provides insights into the relationship between flow and
1-3



FIG. 3 (color online). (a) Strain-rate
profiles reveal spreading of deformation
with time (U � 1m=s); (b) strain-rate
profiles at different sliding velocities
show greater localization at higher slid-
ing velocities (t � 1 s). Flow parameters
for OFHC copper as in Fig. 2 [12].
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material parameters, many of which are nonintuitive. The
exact solution offers a clear and isolated way of testing the
dependency of friction and flow behavior on material
properties.

It is suggested that the applicability of this technique for
determining strain-rate and strain profiles is not restricted
to tribology. The understanding of analogous shearing
processes such as explosive welding and the formation of
shear bands could be enhanced by this approach. The
microstructure of the weld interface due to explosive weld-
ing and that within shear bands is characterized by the
formation of ultrafine crystalline material [20], a feature
that is also observed in the microstructure adjacent to
sliding interfaces [1,2]. Furthermore, recent MD simula-
tions show that vorticity plays an important role in the
formation of this tribolayer during sliding [4]. Waves and
vortices have also been observed in explosively welded
interfaces [21]. At much larger size scales, the develop-
ment of fine-grained mylonite where tectonic plates inter-
act may be related [22]. These observations suggest that,
despite diversity in size scale and mechanistic details of
deformation, the nature of flow in these shear phenomena
is broadly similar. Thus, the continuum method adopted in
this study may have wide-ranging applications.

In summary, an equation of motion was successfully
applied to the problem of determining velocity profiles
developed during sliding of materials. The continuum
technique invoked momentum balance and generic mate-
rial flow laws without delving into detailed deformation
mechanisms. It was found that the shape of the velocity
profile is determined by the strain-rate sensitivity, while the
spatial extent of deformation is determined by strain-rate
sensitivity, strength parameters, and sliding velocity. It was
also found that these parameters control transient friction
and the rate of spreading of deformation. Knowledge of
velocity and strain-rate profiles is expected to enhance the
understanding of sliding friction mechanisms and associ-
ated microstructures.
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