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We present two approaches to the dynamics of a quench-induced phase transition in the quantum Ising
model. One follows the standard treatment of thermodynamic second order phase transitions but applies it
to the quantum phase transitions. The other approach is quantum, and uses Landau-Zener formula for
transition probabilities in avoided level crossings. We show that predictions of the two approaches of how
the density of defects scales with the quench rate are compatible, and discuss the ensuing insights into the
dynamics of quantum phase transitions.

DOI: 10.1103/PhysRevLett.95.105701 PACS numbers: 64.60.Ht, 05.70.Fh, 73.43.Nq, 75.10.Jm
Studies of phase transitions traditionally focused on
equilibrium scalings of various properties near the critical
point. The first major exception was an attempt to model
the physics of the early Universe: Kibble [1] noted that
cosmological phase transitions in a variety of field theo-
retic models lead to formation of topological defects (such
as monopoles or cosmic strings) which may have observ-
able consequences. One of us then pointed out [2] that
analogues of cosmological phase transitions can be studied
in the laboratory. In such experiments the equilibrium
critical scalings predict various aspects of the nonequilib-
rium dynamics of symmetry breaking, including the den-
sity of residual topological defects [2,3].

These ideas led to the Kibble-Zurek mechanism (KZM),
a theory of defect formation that uses the critical scalings
of the relaxation time and of the healing length to deduce
size (�̂) of domains that choose the same ‘‘broken symme-
try vacuum’’ [3,4]. When the broken symmetry phase
permits their existence, the KZM predicts defects will
appear with density of about one defect unit (e.g., one
monopole or a �̂-sized section of a string) per �̂-sized
domain. This KZM prediction has been tested, extended
and refined with the help of numerical simulations [5,6],
and verified in a variety of increasingly sophisticated and
reliable experiments in liquid crystals [7,8], superfluids [9–
11], superconductors [12–14], and other systems [15].

A majority of the experimental data agree with the
KZM. One notable exception is the case of superfluid
4He, where initial reports of KZM vortices being detected
[9] were retracted [10] after it turned out that stirring had
inadvertently induced vorticity. In view of various uncer-
tainties, it is still not clear whether 4He experiments are at
odds with the numerics-assisted KZM predictions.
Regardless, KZM provides a theory of the dynamics of
second order phase transitions ranging from low tempera-
ture Bose-Einstein condensation to grand unification scales
encountered in particle physics and cosmology.
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In this Letter we consider a barely explored problem: the
dynamics of quantum phase transitions. Quantum many-
body systems (e.g., Bose gases) can undergo thermody-
namic phase transformation (such as Bose-Einstein con-
densation that follows evaporative cooling). KZM theory,
developed to deal with thermodynamic phase transitions,
applies in this case directly, even though the dynamics of
Bose condensation is explicitly quantum [16].

On the other hand, a quantum phase transition [17] (e.g.,
the Mott-insulator–superfluid transition of bosons in a
periodic lattice) is a change in the character of a system’s
ground state which occurs as some parameter of its
Hamiltonian passes critical value. For instance, lowering
of the amplitude of the optical lattice induces Mott tran-
sition. Unlike thermodynamic transitions, quantum phase
transitions involve only reversible unitary dynamics.
Therefore, scaling arguments that work in thermodynamic
transitions (where the order parameter is damped) may not
be valid in the quantum case (but see [18,19]). Yet, the
dynamics of quantum phase transitions is interesting in its
own right and has applications in quantum information
processing [19,20].

We will study a quench-induced transition in the quan-
tum Ising model. This model is regarded by Sachdev [17]
as one of two canonical quantum phase transitions. It
describes a chain of spins with the Hamiltonian:

H � �J�t�
XN
l�1

�xl �W
XN�1
l�1

�zl�
z
l�1: (1)

Here �xl ; �
z
l are Pauli operators, W is the Ising coupling,

and J�t� is proportional to the strength of an external field
that attempts to align spins with the x axis.

The phase transition from the high-field state (all spins
aligned with x, i.e., j !;!; . . . ;!i) to the low-field
ground state manifold—spanned by j"; "; . . . ; "i and j#; #;
. . . #i, and doubly degenerate in the large N limit—takes
place when J�t� � W. Thus, relative coupling
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FIG. 1. Density of kinks (�) in quantum Ising model after a
quench that starts in a ground state at J � 5W and ends at J � 0,
plotted versus the dimensionless quench rate �0=�Q � @v=4W2

for N � 50; 60; 70; 80; 90; 100 (solid lines; bottom to top). The

simulation data are consistent with the scaling �̂KZM �
�������������
�0=�Q

q
,

Eq. (10), predicted by the Kibble-Zurek mechanism. (See [19]
for details on the numerical method). Agreement improves with
N; for 100 spins, a fit gives �� ��0:58Q (dashed line). As in the
classical case [5] Eq. (10) is an overestimate; the best fit is � ’
0:16�̂KZM.
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��t� � J�t�=W � 1 (2)

is expected to play a role of the relative temperature �T�t�TC
�

1� in a system’s behavior near the critical point TC.
Indeed, all relevant properties depend on the size of the

gap ��� between the ground state and the first excited state.
As N ! 1, the gap is

� � 2jJ�t� �Wj � 2Wj��t�j; (3)

and sets an energy scale reflected in the relaxation time

� � @=� � @=2Wj��t�j � �0=j��t�j: (4)

Divergence of � near the critical point is the critical slow-
ing down familiar from thermodynamic phase transitions.

The healing length is given by the product of the speed
of sound �c� and the relaxation time

� � 2Wa=��t� � a=j��t�j � �0=j��t�j; (5)

where c � 2Wa=@ (see [17]), and a is the distance between
spins. The divergence of � near the critical point is analo-
gous to critical opalescence.

The scaling of � and � suggests estimating the size of
broken symmetry domains (i.e., regions of aligned spins)
using the same approach that worked in thermodynamic
transitions [2,3]: Near the critical point ‘‘reflexes’’ of the
system (measured by the relaxation time �) deteriorate,
until—at the critical point, where � � 1—the system
cannot react at all. Yet, early in the quench � is still small,
and its state is still able to adjust to variations of the
external parameter (e.g., J or T). This suggests splitting
the quench into the near-critical impulse regime and the
quasiadiabatic regime far from the critical point. Such split
is the essence of KZM.

The instant (t̂) when behavior of the system changes
from adiabatic to impulse is of key importance. This
happens when its reaction time [given by Eq. (4)] is the
same as the time scale on which its Hamiltonian is
changed. To calculate t̂, we assume that the external bias
field changes linearly with time, so that ��t� � t=�Q. As
the relative coupling changes on a time scale ��t�= _��t� � t,
the switch between adiabatic and impulse regimes occurs
at the instants �t̂ when relaxation time is equal to t,

��t̂� � �0=j��t̂�j � �0�Q=t̂ � ��t̂�= _��t̂� � t̂; (6)

which yields

t̂ �
�����������
�Q�0

p
�

������������������
�Q@=2W

q
: (7)

Typically, these two instants ( � t̂) separate evolution
into three regimes. Initially, for t <�t̂, the system’s state
will adjust to the decreasing J�t�. However, at t � �t̂
(before the critical point) this tracking of the instantaneous
ground state of H will cease. Evolution will restart only at
�t̂ (after the critical point), with an initial state similar to
the one ‘‘frozen out’’ at �t̂.
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In thermodynamic phase transitions fluctuations of the
order parameter at t̂ give rise to domains of size �̂ given by
the healing length at �t̂. Using the relative coupling �̂ at t̂
we similarly calculate for the quantum Ising model:

�̂ � ��t̂� � t̂=�Q �
�������������
�0=�Q

q
; (8)

�̂ � �0=�̂ � �0
�������������
�Q=�0

q
� a

������������������
2W�Q=@

q
: (9)

Note that this scaling differs from the �̂ � �0=
���̂
�

p
�

�0��Q=�0�
1=4 predicted by nonrelativistic mean-field theo-

ries for second order phase transitions [2,3].
Following KZM, we now expect the appearance of O�1�

defects per �̂. Their density should be, therefore,

�̂ KZM ’ a=�̂ �
������������������
@=2W�Q

q
: (10)

This is only an estimate (but see Fig. 1). Simulations of
classical second order transitions yield defect densities that
scale with �Q as predicted by KZM, but that can be lower
by about an order of magnitude than a=�̂: Defects can be
separated not by �̂ but by approximately 10 �̂ (see [5]).

This KZM paradigm should not be uncritically applied
to quantum phase transitions. Above all, thermodynamic
fluctuations are ‘‘real.’’ If they survive from before �t̂,
they can tip the balance at �t̂, breaking symmetry right
after the transition. It is hard to make an analogous argu-
ment for a quantum case equally convincing. Quantum
fluctuations exist, but they are virtual, so it is not obvious
that they will have a similar symmetry breaking effect on
the post-transition state. On a more prosaic note [as we
shall see in Fig. 2(a)] the relevant gap (i.e., gap between the
ground state and the first accessible excited state) is not the
symmetric �, Eq. (3). Rather, its slope is twice as large on
the approaching side.
1-2
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FIG. 2. (a) Energies of lowest excitations (see [19]) for N � 20. The energies of the ground state and the first accessible excited state
are the lowest (horizontal) solid line and the second lowest solid line. (b) (i) Quench time �Q=�0 � 4W2=@v that yields f of 99%, and
(ii) the fidelity for a fixed �Q � 200@=W � 400�0 as a function of the number of spins N in the quantum Ising chain. A power-law fit
to the data corresponding to �Q99%

gives a power of 1.93 (LZF yields 2, as would KZM). The best fit for the fidelity with Landau-Zener
dependence f � 1� expf�aW�Q=@N

2g yields a ’ 59, compared to theoretical a � 2�3 ’ 62 based on the steeper slope in the
marked energy level above [a � 4�3 ’ 124 when the more shallow slope in Fig. 2(a) consistent with Eq. (3) is taken]. (c) Upper
(dashed lines) and lower (solid lines) bounds on fidelity as a function of �0=�Q � @v=4W2 for N � 90 (i), N � 70 (ii), N � 50 (iii),
N � 30 (iv). Fits to LZF (dotted lines) lie between these bounds, and for f > 0:6 give a ’ 59 (i), 59 (ii), 57 (iii), and 54 (iv).
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Nevertheless, Fig. 1 shows that number of kinks per
spin— the residual kink density created by quenching the
quantum Ising model scales approximately as �1= �������Qp ,
just as predicted by Eq. (10). This holds throughout the
region of KZM’s validity, i.e., where �̂ is much less than 1
(so that the quench is quasiadiabatic early on and at the
end, but ‘‘impulselike’’ near the critical point, and thus at
least one defect is expected). The prefactor �0:16 [0.12 if
the steeper slope on the approach in Fig. 2(a) is taken] is
also not far from previous experience [5].

The Kibble-Zurek mechanism works in a quantum tran-
sition. Yet, in view of doubts about quantum fluctuations,
an explicitly quantum treatment would be reassuring.

As N ! 1, the gap ���—a salient feature of the quan-
tum Ising model—disappears at the critical point in accord
with Eq. (3). When N <1, this critical gap is small, but
finite [see Fig. 2(a)]. This is of key importance for the
remainder of our paper. Instead of calculating the density
of defects in an infinite system, we shall compute size ( ~N)
of the largest spin chain likely to remain defect-free (i.e., in
a ground state) after a quench, as a function of quench time
scale �Q. For defect probability of �50%, the inverse of ~N
is an estimate of defect density.

Excited eigenstates of H, Eq. (1), on the broken sym-
metry (W > J) side of the transition describe states of the
spin chain in which the direction of symmetry breaking
varies along the chain once, twice, etc., [17]. Thus, they
represent states containing one, two, etc., ‘‘kinks.’’ The
behavior of the energies of lowest excitations of H in the
vicinity of the critical point, [Fig. 2(a)], suggests avoided
level crossing. Hence, it appears that phase transition
dynamics in the quantum Ising model can be treated using
the Landau-Zener formula (LZF) [21]. The LZF gives the
probability of exciting a system driven through an avoided
level crossing:

pCHANGE ’ exp
�
�
��̂2

2@jvj

�
: (11)
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Here, �̂ is the minimum energy gap between the two
levels, and v is the quench velocity. That is, far away
from the ‘‘point of the nearest approach,’’ v � _�.

Using LZF we can compute the average size ~N of a spin
chain that is likely to remain in the ground state throughout
the quench. In the adiabatic limit (v � 0), Eq. (11) predicts
that the system will stay in the same energy eigenstate (i.e.,
the probability of switching levels will be vanishingly
small). To quantify this Ref. [19] uses the fidelity, f �
jh ACTUALj GROUNDij2, which gives the probability that no
defects will be produced. From LZF it follows that
pCHANGE ’ exp��

��̂2

2@jvj� ’ 1� f. Thus, the rate of a nearly
defect-free quench (resulting in defects with probability
1� f � 1) is bounded:

jvj �
��̂2

2@j ln�1� f�j
: (12)

Below we will express v using quench time �Q andW; v �

j _�j � 2 _J�t� � 2W=�Q.
The lowest excited states are inaccessible— they have a

different parity than the ground state, and H conserves
parity. The first accessible level has one kink for J � 0.
It gets to within �̂ � 4�W=N for N � 1 above the ground
state. With these ingredients using Eq. (12) we obtain

jvj � j _�j �
2W
�Q

�
��4�W= ~N�2

2@j ln�1� f�j
: (13)

It relates the size ~N of a defect-free chain to quench time:

~N � 2�

��������������������������
�W�Q

@j ln�1� f�j

s
� 2�W

�����������������������������
2�

@vj ln�1� f�j

s
: (14)

Figs. 2(b) and 2(c) show that LZF provides a good fit for
f > 0:5. This is not completely unexpected: Damski [22]
recently proposed a ‘‘KZM approximation to LZF’’ in an
insightful paper. However, even upon closer inspection
(work in progress [23]), such agreement between LZF in
1-3
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FIG. 3 (color). Number of kinks in chains (N �
50; 60; 70; 80; 90; 100, spins, bottom to top) after a quench versus
the quench rate �0=�Q � @v=4W2. Both the scaling �̂� 1=

���
�

p
Q

predicted by KZM (red lines), Eq. (10), and the LZF estimate
1� f (blue lines) are valid where expected. The red lines are
linear fits in the range (0.025,0.25) yielding slopes between 0.66
and 0.58. The blue lines are the fit results from Fig. 2(c).
Numerical data (obtained using the method developed in [19])
include these used in Fig. 1. However, we now go beyond the
expected range of validity of KZM: For quenches slow enough to
create ‘‘less than a kink’’ LZF provides reliable predictions,
while very fast quenches are ‘‘all impulse,’’ and—according to
KZM— the number of kinks should saturate, as is indeed seen.
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the setting which is not a standard avoided level crossing
and the numerics might be still somewhat surprising.

When we compare the KZM and LZF predictions for
defect density, we find

~� LZF ’
1
~N
�

1

2�

��������������������������
2j ln�1� f�j

�

s
�̂KZM: (15)

The two estimates of defect density exhibit the same scal-
ing with the quench rate and with the parameters of H,
Eq. (1). However, LZF predicts fewer defects than the
‘‘raw KZM estimate’’ (~�LZF ’ 0:14�̂KZM when f is set—
somewhat arbitrarily— to 0.5). This is no surprise; numeri-
cal simulations, experiments and analytic solutions to spe-
cific models, have shown that Eqs. (9) and (10) provide
correct scalings, but tend to overestimate densities (see,
e.g., [5,14]). Figure 1 confirms that this is also true for the
quantum Ising model.

We note that while �̂KZM and ~�LZF are closely related,
they answer somewhat different questions. In particular,
�̂KZM does not depend on f. However, when less than one
defect is expected in a chain, the number of defects is
’ 1� f and can be computed using LZF. Figure 3 shows
that LZF and KZM complement each other in this case, and
jointly cover a wide range of quench rates.

We have found that a quantum analogue of KZM, based
on critical scalings, predicts the results of numerical simu-
lations. As expected, KZM scaling holds when �̂ < 1—
10570
i.e., when the quench starts and ends in the adiabatic
regime, but becomes impulselike near the critical point.
When the quench is so slow that it never acquires impulse-
like character, LZF is accurate. We conclude that the two
approaches work well in complementary regimes of
quench rates, and predict the same scaling for the size of
broken symmetry domains with quench time.
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