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Diffuse Scattering and Phason Fluctuations in the Zn-Mg-Sc Icosahedral Quasicrystal
and Its Zn-Sc Periodic Approximant
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We report on the absolute scale measurement of the x-ray diffuse scattering in the ZnMgSc icosahedral
quasicrystal and its periodic approximant. Whereas the diffuse scattering in the approximant is purely
accounted for by thermal diffuse scattering, an additional signal is observed in the quasicrystal. It is
related to phason fluctuations as indicated by its Q2

per dependence. Moreover, when compared to previous
measurements carried out on the i-AlPdMn phase, we find that the amount of diffuse scattering is smaller
in the i-ZnMgSc phase, in agreement with larger phason elastic constants in this phase. This is confirmed
by the observation of a large number of weak Bragg peaks having a highQper reciprocal space component.
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Quasicrystals (QC) are long range ordered materials
with a symmetry incompatible with translation invariance
[1]. Their diffraction pattern exhibits sharp Bragg reflec-
tions, with, for instance, fivefold symmetry in the case of
icosahedral phases [see Ref. [2] for an introduction]. As for
any aperiodic crystals, [3], the long range aperiodic order
brings new Goldstones modes, named phason modes. Their
origin is better understood in the high dimensional descrip-
tion of aperiodic crystals, where the periodicity is restored.

For icosahedral quasicrystals, the structure can be em-
bedded in a six-dimensional (6D) space which decomposes
in two orthogonal 3D subspaces: the physical (parallel) and
the perpendicular (complementary) space. The periodic 6D
lattice is decorated with 3D atomic surfaces. The 3D
quasicrystalline structure is obtained as a section of the
6D decorated lattice by the parallel space. The invariance
of the system free energy under a uniform translation of the
cut space along the perpendicular space brings three pha-
son modes which are predicted to be collective diffusive
excitations [4,5].

Most of the experimental work in QC systems has been
carried out in the i-AlPdMn phase, where phason modes
have been evidenced using diffuse scattering measure-
ments analyzed in the framework of the hydrodynamic
elasticity theory of quasicrystals [6–8]. The temperature
dependence of the diffuse scattering has been interpreted as
the result of pretransitional phason fluctuations, frozen in
below 500 �C because of kinetic reasons [9], while acti-
vated above. The diffusive character of long-wavelength
phason dynamics has been recently evidenced using co-
herent x-ray photon correlation spectroscopy [10].

The hydrodynamic theory is a continuum theory, which
does not give a microscopic description of phason modes.
Whereas the microscopic interpretation of phason modes is
well understood in a few incommensurately displacive
modulated phases, where damped propagative phason
modes have been observed [11], this is still an open prob-
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lem for QC. Because of the specific geometry of QC
structures, when a phason mode fluctuation sets in the
system, it results in correlated atom exchanges or ‘‘atom
flip’’ between double-well sites having similar local envi-
ronments, but too close to be occupied simultaneously.
Modeling of this situation has been mostly carried out for
the 3D Penrose random tiling, where tiles are allowed to
reshuffle. In this model system, phason modes are hydro-
dynamics in agreement with theoretical predictions. The
‘‘restoring force’’ described by the phason elastic constants
is related to the configurational entropy of the system
which is maximal in the quasicrystal [12]. However, mod-
eling real atomic structure is not yet achieved, and the
physics of phason modes at the atomic scale in QC remains
an open question.

To gain some insight into the microscopic of phason
modes we present a comparative study of the diffuse
scattering measured on an absolute scale in both the
ZnMgSc icosahedral phase [isostructural to the i-CdYb
quasicrystal [13] ] and the Zn85Sc15 periodic approximant
(cubic phase, Im3 space group, a � 1:384 nm) [14]. Both
the periodic approximant and the quasicrystal share similar
local environments. The same atomic cluster is found in
both phases, and is packed on a bcc lattice in the approx-
imant and quasiperiodically in the QC [15]. Indeed, the
structure of the approximant can be generated from the 6D
representation of the QC by tilting the cut space until it
reaches a rational slope. As a result, the crystal and the
quasicrystal have similar local ‘‘atom flip’’ configurations.
Despite these similarities in the local order, we show, in the
following, that diffuse scattering due to phason modes only
shows up in the QC.

Single grains of the Zn85Sc15 cubic and
Zn80:5Mg4:2Sc15:3 icosahedral phases were obtained by
slow cooling from the liquid state, annealed at 650 and
750 �C, respectively, and subsequently quenched in water
[14]. In order to avoid surface damage by polishing, we
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used fractured single grain samples. This led to approxi-
mately flat surfaces, with a size of 3� 3 mm2 for both
phases.

Measurements of the diffuse scattering have been car-
ried out on the D2AM beam line located on a bending
magnet at the European Synchrotron Radiation Facility.
The incoming x-ray energy was selected by a double Si111
monochromator and set to 9.3 keV, to avoid Zn fluores-
cence. To minimize parasitic scattering, samples were
placed under an evacuated Be hemisphere, and measure-
ments carried out in reflection geometry. The measured
diffuse scattering intensity has been set on an absolute
scale (e:u:= �A3, where e.u. stands for electron unit) using
an Al powder sample for flux calibration and after correc-
tion from sample absorption. The absolute scale diffuse
scattering is proportional to the differential scattering cross
section of the sample, for one volume unit, allowing for a
comparative study of the amount of diffuse scattering
intensity between various samples [16].

The intensity distribution of strong Bragg reflections is
similar in the approximant and the quasicrystal. Although
Bragg reflections lie on a periodic lattice for the approx-
imant, they display a pseudoicosahedral symmetry. In fact,
a phason strain matrix allows us to map indices of the
quasicrystal Bragg peaks onto the ones of the approximant.
FIG. 1 (color online). Isointensity contours of the diffuse scat-
tering measured in two identical portions of the reciprocal space
for the ZnSc periodic approximant (bottom) and the ZnMgSc
icosahedral phase (top). Arrows indicate the twofold (left) and
fivefold (right) high-symmetry axes. The scattering plane is
twofold. Axes coordinates are expressed in 2�=a6D and
2�=a units (or reciprocal space unit, r.l.u.) for the quasicrystal
and the approximant, respectively.
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For instance, the strong 18=29 fivefold axis reflection in the
quasicrystal [where we have used the N and M indices
following [17] ] corresponds to the �3 5 0� reflection. This
is illustrated on Fig. 1 which displays isointensity contours
of the scattered intensity measured in two similar areas of
the reciprocal space for the approximant (bottom) and the
quasicrystal (top). Arrows indicate the twofold (left) and
fivefold (right) high-symmetry axes. As visible on the
figure the number of Bragg reflections is much larger in
the i-ZnMgSc phase.

The shape anisotropy of the diffuse scattering is also
very different in both phases. In the periodic approximant,
the diffuse scattering shape is identical around all Bragg
reflections: it has the form of an ellipsoid elongated along
the direction transverse to the Q vector. This is what is
expected for the contribution from thermal vibrations in an
almost isotropic solid. The situation is quite different in the
quasicrystal, where the shape anisotropy of the diffuse
scattering located around Bragg reflections is changing
from one Bragg peak to the other.

A more quantitative and detailed analysis has been
carried out by considering Q scans performed around
selected Bragg peaks and along directions parallel to
high-symmetry axis. The shape and the intensity distribu-
tion of the diffuse scattering have been analyzed in the
framework of the hydrodynamic theory of crystals and
quasicrystals. For the icosahedral phase, the diffuse scat-
ZnSc
i-ZnMgSc

ZnSc
i-ZnMgSc

FIG. 2. Comparison of the diffuse scattering intensity on an
absolute scale in the ZnSc approximant and the ZnMgSc quasi-
crystal, for two twofold reflections having different values of
their Qper component. Top: �6 0 0� and 20=32 reflections; bot-
tom: �8 0 0� and 32=48. The intensity of the �8 0 0� reflection
has been renormalized to the one of the 32=48 reflection.
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tering intensity depends on 5 elastic constants: the two
Lamé coefficients �, �, the two phason elastic constant
K1 and K2, and a phonon-phason coupling term K3. Each
6D reciprocal lattice vector Q decomposes in two 3D
orthogonal components: Qpar, the physical, observable
reciprocal vector and Qper, the complementary component.
In the case where the K3 coupling term can be neglected,
the diffuse intensity S�Qpar � q� measured at a distance q
from a Bragg peak includes both a phonon and a phason
part given by [8]:

S�Qpar � q� � IBrq�2��Q2
par � �Q2

per�; (1)

where IBr is the Bragg peak intensity. � and � are given by
the eigenvalues of the inverse of the hydrodynamic matrix.
They depend on the q direction and on the Lamé and
phason elastic constants, respectively. The �Q2

par term in
Eq. (1) corresponds to the thermal (phonon) diffuse scat-
tering (TDS) and is the only term contributing to the signal
in the case of the crystal.

Since the sound velocities and thus Lamé coefficients
are almost identical in the crystal and the QC [18], there
should be a Qper dependent supplementary contribution in
the QC if phason modes take place. This is indeed the case,
as illustrated in Fig. 2, which compares the intensity dis-
tribution around two Bragg reflections in both the crystal
and the quasicrystal. The amount of diffuse scattering is
larger in the quasicrystal than in the crystal. Moreover, the
relative excess diffuse scattering is larger for the 32=48
reflection (bottom) whose Qper component is larger than
the 20=32 one (top).

From the absolute scale measurements it is possible to
extract values of the elastic constants in both the crystal
and the QC. For this purpose the q�2 decay of the diffuse
intensity [Eq. (1)] around various reflections has been fitted
as mq�2, from which m is extracted. Since the diffuse
intensity is proportional to IBr, the pertinent parameter to
consider and reported hereafter ism=IBr, equal to ��Q2

par �

�Q2
per� [Eq. (1)].
B

par

FIG. 3. Evolution of m=IBr as a function of Q2 for the cubic
approximant. Open and full circles stand for transverse and
longitudinal scans. The longitudinal and transverse sound veloc-
ities are extracted from the two linear fits.
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In the case of the crystal, when q is parallel (longitudi-
nal) or perpendicular (transverse) to Q, the Eq. (1) leads to
m=IBr � Q2

parkBT=V
2
T�L�, where VT and VL stand for the

transverse and longitudinal sound velocities, respectively.
Since VT is smaller than VL, this results in an ellipsoidal
shape of the diffuse intensity, which one is elongated in the
transverse direction, as observed experimentally on Fig. 1.
Sound velocities are extracted from the linear variation of
m=IBr with Q2

par as shown on Fig. 3. We find sound veloc-
ities VT and VL equal to 2370� 150 and 4040�
300 ms�1, respectively, in good agreement with the ones
obtained by inelastic x-ray and neutron scattering (2510�
50 and 4850� 100 ms�1) [18]. This thus confirms that the
observed diffuse scattering in the approximant mainly
originates from thermal vibrations.

In the case of the QC both the TDS and phason terms
contribute to the signal and to the fitted value m=IBr. Since
sound velocities and densities are almost equal in the
approximant and the QC, the TDS contribution can be
easily evaluated and subtracted by computing the quantity
m=IBr � �Q2

par [Eq. (1)]. When plotted as a function of
Q2

per (Fig. 4), there is a linear trend which demonstrates that
the origin of the supplementary contribution to the diffuse
scattering signal is indeed related to phason modes. On this
figure, we have reported on the same graph results obtained
for twofold and fivefold reflections and different direction
of the wave vector q in reasonable agreement with the
weak anisotropy of the diffuse scattering.

Assuming that K3 can be neglected, phason elastic
constants can be evaluated and are found to be of the order
of K1=kBT � 0:5� 0:2 atom�1 and K2=K1 � �0:15�
0:1. It has to be noticed that the observed shape anisotropy
and intensity distribution of the diffuse scattering is not
completely reproduced by these values, as can be seen by
the scattered distribution of points in Fig. 4. Including the
K3 phonon-phason coupling term does not improve much
B
α

FIG. 4. Evolution of m=IBr corrected for the phonon contribu-
tion as a function of Q2

per, for scans performed along a single
direction q centered on reflections on a single high-symmetry
axis. Full and open circles stand for transverse and longitudinal q
scans around twofold Bragg peaks. Diamonds stand for trans-
verse q scans around fivefold reflections. The solid line is a guide
for the eyes.
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FIG. 5. Comparison of the diffuse intensity, measured on an
absolute scale in the i-AlPdMn (dashed line) and the i-ZnMgSc
icosahedral phase (solid line) along a twofold axis. The
i-AlPdMn data have been renormalized with respect to the
Bragg intensity of the 20=32 reflection of the i-ZnMgY one.
Vertical bars on the Q axis indicate the theoretical position of
Bragg reflections with a Qper component up to 8 r.l.u..

PRL 95, 105503 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005
the agreement. This indicates that the observed diffuse
scattering may also contain a contribution different from
a pure hydrodynamic one.

It is interesting to compare the present results with the
one obtained in the i-AlPdMn phase, for which K1=kBT �
0:1 atom�1, K2=K1 � �0:53 at room temperature [7].
The K1 value is thus larger in the i-ZnMgSc than in the
i-AlPdMn phase. Since the diffuse scattering intensity
roughly scales with 1=K1, there should be a smaller diffuse
scattering intensity in the i-ZnMgSc. This is indeed what is
observed experimentally as shown in Fig. 5, where both
absolute scale data are presented: the amount of diffuse
scattering is 3 to 4 times smaller in the i-ZnMgSc phase.

As a result, the perpendicular (phason) Debye-Waller
factor Bper, proportional to the mean squared perpendicular
‘‘fluctuations’’ of the atomic surfaces, and which also
roughly scales with 1=K1, is much smaller in the
i-ZnMgSc than in the i-AlPdMn phase. This has important
consequences on the diffraction pattern, visible on Fig. 5.
Indeed a large number of weak reflections, having a large
Qper component, are visible for the i-ZnMgSc phase,
whereas they are absent in the i-AlPdMn one [19]. In
fact, this twofold diffraction pattern can only be indexed
by considering very ‘‘high Qper’’ reflections with values up
to 8 (in 2�=a6D units) (vertical bars on Fig. 5), to be
compared with 2.5 in the case of the i-AlPdMn phase,
where the larger perpendicular Debye-Waller factor sup-
presses high Qper reflections.

The present results thus show that phason elastic con-
stants depend on the system, as already inferred from the
i-AlCuFe and i-AlPdRe studies [20]. The details of the
chemical interactions certainly play a crucial role in that
respect. Nevertheless, it also demonstrates that the local
order is not sufficient to set in long-wavelength phason
modes, since they are not observed in the periodic approx-
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imant. The quasiperiodic long range order is indeed neces-
sary for phason modes to show up.

In conclusion, we have shown that whereas the diffuse
scattering of the ZnSc approximant is only due to thermal
vibrations, a supplementary contribution, related to phason
modes, is observed in the i-ZnMgSc quasicrystal. This
demonstrates that long-wavelength phason modes are in-
deed a characteristic of the quasiperiodic long range order.
The K1 phason elastic constant is found to be larger in the
i-ZnMgSc than in the i-AlPdMn quasicrystal. As a result,
we observe both a smaller amount of diffuse scattering and
a larger number of weak Bragg peak in the i-ZnMgSc
phase.
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