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Transition to Chaos in a Confined Two-Dimensional Fluid Flow

D. Molenaar, H. J. H. Clercx, and G. J. F. van Heijst
Department of Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands

(Received 17 June 2004; revised manuscript received 13 May 2005; published 2 September 2005)
0031-9007=
For a two-dimensional fluid in a square domain with no-slip walls, new direct numerical simulations
reveal that the transition from steady to chaotic flow occurs through a sequence of various periodic and
quasiperiodic flows, similar to the well-known Ruelle-Takens-Newhouse scenario. For all solutions
beyond the ground state, the phenomenology is dominated by a domain-filling circulation cell, whereas
the associated symmetry is reduced from the full symmetry group of the square to rotational symmetry
over an angle �. The results complement both laboratory experiments in containers with rigid walls and
numerical simulations on double-periodic domains.
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Experiments on quasi-two-dimensional (2D) flows in
shallow fluid layers [1,2] and stratified fluids [3], and
numerical studies of confined purely 2D flows, revealed
the importance of no-slip boundaries as vorticity sources.
These confined flows have a remarkably different phe-
nomenology from flows on a double-periodic domain [4–
6], with spontaneous spin-up phenomena, observed in
computations of decaying and forced 2D flows [5,6] and
in quasi-2D turbulence experiments in confined stratified
fluids [3], as a striking example. A key issue for such flows
is the possible generation of mean-square vorticity, or
enstrophy Z�t� �

R
� !

2dA, at the no-slip walls, whereas
that quantity decays in time on double-periodic domains
[7]. Moreover, in continuously forced 2D turbulence of
high Reynolds number the kinetic energy of the flow may
grow unbounded on a double-periodic domain, whereas it
saturates in a confined domain due to the dissipative action
of the no-slip walls. Acknowledging the influence of no-
slip boundaries on the phenomenology of confined 2D
hydrodynamics motivates a more detailed computational
investigation of such flows, also for the preturbulent states
of motion. In particular, the transition sequence from
steady to chaotic flows and the associated phenomenology
is largely unexplored for the setting of a square domain
with no-slip boundaries and forms the subject for this
Letter.

For laboratory experiments on quasi-2D flows in a
square container with no-slip walls [1], the transition se-
quence was described qualitatively in terms of semistable
vortex configurations and was shown to depend strongly on
the value of the bottom friction parameter. In containers
with large aspect ratios the phenomenology of electromag-
netically forced quasi-2D flows in shallow fluid layers was
dominated by an array of driven vortices [8]. These latter
experiments were mimicked in purely 2D computations,
with one periodic and one stress-free direction [9], reveal-
ing a period-doubling cascade to chaos. Finally, computa-
tions on a square 2D domain with two periodic directions,
the traditional setting for computational 2D hydrodynam-
ics, revealed a complex transition sequence including trav-
eling waves and several quasiperiodic motions [10].
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Complementing both the computations and the labora-
tory experiments mentioned above, we show in this Letter
that for a 2D flow on a square domain with no-slip walls the
transition sequence to chaos, as a function of a single
control parameter, corresponds to the Ruelle-Takens-
Newhouse scenario [11,12]. This transition sequence, ob-
served before in, e.g., Rayleigh-Bénard convection experi-
ments [13–17], consists of a steady state, periodic flow
(period-1 limit cycle), two-frequency quasiperiodic flow
(2-torus), three-frequency quasiperiodic flow (3-torus), and
chaotic flow, respectively.

Our direct numerical simulations were performed with a
pseudospectral code, based on Chebyshev polynomials
[18], solving the 2D (Navier-Stokes) vorticity equation
on the square ��1; 1�2. The initial conditions correspond
to zero vorticity for all simulations. An external force
excites the flow, which has unit density, with a fixed
vorticity amplitude A0 � 0:05 at the Fourier wave number
kf � 6 and an additional weak solid-body rotation (kf �
0). This corresponds to a chessboard pattern of �kf�2 driven
monopolar vortices of alternating sign, which carries the
full group of reflection and rotation symmetries of the
square. The forcing scheme is comparable to the forcing
in experimental setups with shallow layers of electrolyte
[1,2], whereas it is of smaller scale than the �4; 1�-mode
forcing used in computations on a double-periodic domain
[10].

The inverse kinematic viscosity times the constant forc-
ing amplitude A0 serves as the control parameter, �0 �
�A0=��. Increasing its value in discrete steps, our results
can be summarized as follows: two steady branches are
observed for �0 < 37:5, a period-1 limit cycle for 37:5 �
�0 � 55:0, quasiperiodic motion and a phase of frequency
locking on the 2-torus for 57:5 � �0 � 75:0, quasiperiodic
motion on the 3-torus for �0 � 77:5, and chaos for 80:0�
�0 �85:0. Computations with forcing wave number kf�4
revealed the same transition sequence, although the funda-
mental frequencies of the various (quasi)periodic motions
were shifted to different values, as compared to the case
with kf � 6. Results are, however, expected to vary within
the full ��0; kf� parameter space.
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As the forcing is defined in terms of Fourier modes, it is
subsequently converted to Chebyshev polynomials [6].
The number of computational modes and the time step
equal either 1612 and �t � 3:4� 10�4 or 1812 and �t �
2:7� 10�4, whereas the simulations run up to T � 1000 to
generate time series of sufficient length. To make sure the
computations are well resolved, it was verified that an
increase in the number of computational modes had no
effect on the phenomenology or the observed frequencies
of motion. Also the boundary layer thickness was checked
to be well within computational resolution.

Two steady solutions were found under the given pa-
rameter values, as opposed to the four steady branches
observed for the double-periodic domain [10]. Similar to
experiments in electromagnetically driven shallow fluid
layers with strong bottom friction [1], the ground or con-
ductive state, found for �0 � 25:0, equals essentially the
forcing mode with the associated symmetry. The system
bifurcates towards a second steady state in the interval
25:0< �0 < 37:5. Analogous to the onset of steady
Rayleigh-Bénard convection, with its convection rolls,
the flow field in the second steady state consists of a
domain-filling circulation cell, with secondary vortices in
the corners. This configuration is no longer reflection
symmetric.

A Hopf bifurcation leads to time-dependent behavior in
the form of a period-1 limit cycle, observed in the interval
37:5 � �0 � 55:0. Upon entering the periodic state, the
flow configuration, which is shown in a contour plot of
the normalized vorticity field at parameter value �0 � 37:5,
Fig. 1(a), remains unaltered. When the control parameter is
further increased, however, the overall symmetry is re-
duced to invariance with respect to rotations over �. The
latter symmetry remains unbroken for the remaining values
of the control parameter and is clearly observed in a con-
tour plot of the normalized vorticity field, Fig. 1(b), for
�0 � 55:0. Also, in this configuration the secondary vorti-
ces are no longer at fixed positions in the corners.
(a) ν′ = 37.5 (b) ν′ = 55.0

FIG. 1. Normalized isovorticity plots for time-periodic flows
with rotational symmetry (a) over �=2 and (b) over �, for �0 as
indicated. Contours range from �10 to 10 with an interval of 1,
and dashed lines represent negative values.
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The no-slip boundaries seem to stabilize the flow con-
figuration, as on a square domain with periodic boundary
conditions a similar symmetry breaking was already found
to occur in the steady regime, when moving from the first
to the second branch of steady solutions, whereas the first
time-dependent solution in that case consists of traveling
waves [10].

At the onset of periodic motion, peaks occur in the
power spectrum of a point-measured vorticity time series
at the basic frequency f1 ’ 0:751 and its integer multiples
2f1 and 3f1. For subsequent motions in the periodic state
several higher harmonics are also excited, as shown for
�0 � 40:0 in Fig. 2(a). Evolution of the basic frequency f1

as a function of the control parameter, given in Fig. 3, is
seen to oscillate for the periodic state.

A secondary Hopf bifurcation leads to two-frequency
quasiperiodic flow, observed in the interval 57:5 � �0 �
65:0. Here, spectral peaks occur at linear combinations of
f1 and the second basic frequency f2, Fig. 2(b), where the
winding number [19], W � �f2=f1�, is irrational. The
value of the largest basic frequency increases monotoni-
cally as a function of the control parameter (�0 > 57:5), as
can be seen in Fig. 3, whereas the smallest basic frequency
remains close to constant at f2 ’ 0:26.

At �0 � 67:5 the system has entered a branch of flows
for which the two basic frequencies are locked into a
state with a rational winding number. For this frequency-
locking interval W � 1=3, corresponding to a 1:3 Arnold
tongue [19].
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FIG. 2. Power spectra of vorticity time series for (a) periodic
flow, �0 � 40:0; (b) flow on a 2-torus, �0 � 57:5; (c) flow on a 3-
torus, �0 � 77:5; and (d) chaotic flow, �0 � 80:0.
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FIG. 4. Projection of the attractor onto the �!�t�; !�t	 ���
plane for (a) a period-3 flow, �0 � 70:0; (b) flow on a 3-torus,
�0 � 77:5; and (c) a chaotic flow, �0 � 80:0.
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FIG. 3. Evolution of the largest basic frequency f1 as a func-
tion of the control parameter �0. Solid circles (�) symbolize
period-1 flows, and circles (
) denote flows on a torus.
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Quasiperiodic flow on the 3-torus is found for the pa-
rameter value �0 � 77:5, shown in the form of a power
spectrum in Fig. 2(c), where all peaks can be expressed as
linear combinations of three basic frequencies, f1 ’ 0:849,
f2 ’ 0:445, and f3 ’ 0:285.

Finally, within the interval 80:0 � �0 � 85:0 the tempo-
ral behavior of the flow is characterized by aperiodic
fluctuations, resulting in a power spectrum with a broad-
band continuous component, Fig. 2(d). The presence of
such a continuous component is a general indication of
chaotic behavior [19].

Projections of the system attractor onto the �!�t�;
!�t	 ��� plane are shown in Fig. 4, where the delay �
was determined from the average mutual information [20].
In each case phase space is reconstructed from a vorticity
time series measured at location x � �1=2; 0�. The dynam-
ics can be sufficiently determined from such a single times
series [21], and it was checked that time series measured at
other locations in the domain yielded similar results.

The Poincaré return map plots the first coordinate of a
point where the phase space orbit crosses a given (hyper)-
plane against the first coordinate of the next crossing. For
several values of the control parameter, Poincaré return
maps are shown in Fig. 5.

At first, the two-frequency quasiperiodic flow fills a 2-
torus, resulting in a closed-loop return map in Fig. 5(a).
However, for 67:5 � � � 75:0, the system enters a
frequency-locking interval, for which the 2-torus is no
longer filled by the dynamics. In the corresponding phase
portrait, Fig. 4(a), it is seen that the orbit closes in on itself
after three rotations in the long direction of the torus,
whereas the winding number W � 1=3 indicates that the
orbit simultaneously completes one rotation in the short
direction. The flow lies on a period-3 cycle, for which the
return map consists of three nodal points, Fig. 5(b).

Quasiperiodic flow on the 3-torus results in a compli-
cated structure for the return map, Fig. 5(c), whereas for
the chaotic state, no recognizable pattern can be distin-
guished, Fig. 5(d). However, a projection of the attractor,
Fig. 4(c), has a structure comparable to a projection of the
10450
3-torus, Fig. 4(b), suggesting chaos arises due to the de-
struction of a 3-torus.

The correlation dimension, Dcorr, is a measure of the
(fractal) dimension of the attractor. Estimated according to
Ref. [22], its value is approximately Dcorr ’ 1:0 for the
single periodic flows. At the onset of two-frequency qua-
siperiodic flow the estimate equals Dcorr ’ 2:2, while the
estimate drops to Dcorr ’ 1:3 for the branch of period-3
flows. For the three-frequency quasiperiodic flow Dcorr ’
2:9, which is close to the expected value, whereas the
chaotic motion results in slightly higher dimensions, at
Dcorr ’ 3:6.

To summarize, a transition to chaos comparable to that
described by the Ruelle-Takens-Newhouse scenario, is
3-3
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FIG. 5. Poincaré return maps, for (a) flow on a 2-torus, �0 �
57:5; (b) a period-3 flow, �0 � 75:0; (c) flow on a 3-torus, �0 �
77:5; and (d) chaotic flow, �0 � 80:0.
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retrieved in a forced 2D flow on a square domain with no-
slip boundaries, within the parameter range 25:0 � �0 �
85:0. Chaos arises through the destruction of a 3-torus.
Moving from the ground state towards the chaotic solu-
tions, spatial symmetry is reduced from the full symmetry
group of the square to rotations about the center of the
square over an angle�. For all these solutions the flow field
is dominated by a large circulation cell, which appears
during the secondary steady state, in a manner analogous
to the appearance of rolls during the onset of steady
convection. Overall, the transition sequence is not as rich
as that found in a square domain with periodic boundary
conditions [10]. Finally, the computations with no-slip
walls form a crucial step in understanding results from
laboratory experiments on quasi-2D flows.
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