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We calculate the complete three-loop O��3
s � anomalous dimension matrix for the dimension-five dipole

operators that arise in the standard model after integrating out the top quark and the heavy electroweak
bosons. Our computation completes the three-loop anomalous dimension matrix of operators that govern
low-energy j�Fj � 1 flavor-changing processes, and represents an important ingredient of the next-to-
next-to-leading order QCD analysis of the �B! Xs� decay.
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Weak interaction phenomena at energies much below
the electroweak scale are most conveniently described in
the framework of an effective theory that is derived from
the standard model (SM) by integrating out the top quark
and the heavy electroweak bosons. The Lagrangian of such
an effective theory,

L eff � LQCD�QED �Lweak; (1)

is a sum of the conventional QCD� QED Lagrangian for
the remaining SM fields and a linear combination

L weak /
X
i

Ci���Qi; (2)

of dimension � 5 operators Qi that are built out of those
light fields. Ci��� are the corresponding Wilson coeffi-
cients that depend on the renormalization scale �.

For most phenomenological applications, only operators
of dimensions five and six are relevant. The complete set of
such operators consists of: (i) dimension-six four-fermion
operators, (ii) dimension-six purely gluonic operators, and
(iii) dimension-five dipole operators

� ��� 0F��; and � ���Ta 0Ga
��: (3)

Here ��� � i=2���; ���, while  and  0 stand for fermion
fields of opposite chiralities. Their flavors may or may not
be the same. The electromagnetic and strong field strength
tensors are denoted by F�� and Ga

��, respectively. Ta are
the SU�3�C generators for the considered fermions. For off-
shell calculations, additional operators that vanish by the
QCD� QED equations of motion (EOM) must be in-
cluded (see below).

The structure of Lweak remains the same in any
SU�3�C �U�1�em gauge-invariant extension of the SM
that does not contain exotic light bosons. New physics
effects are therefore encoded in the values of the Wilson
coefficients only.

The dipole operators introduced in Eq. (3) are relevant in
a variety of phenomenological applications, ranging from
electric and magnetic moments of the leptons and nucleons
to radiative decays, such as �! e�, �! ��, B! K	�,
B! ��, and �B! Xs�.
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The Wilson coefficients are determined by matching
Green’s functions of the effective theory and the SM (or
its extension) at the electroweak (or higher) scale �high.
Next, one applies the renormalization group equations

�
d
d�

Ci��� � �ji���Cj���; (4)

to evolve Ci��� to the relevant low-energy scale �low. In
this way, large logarithms ln��2

high=�
2
low� are resummed

from all orders of the perturbation series.
Neglecting QED effects, the anomalous dimension ma-

trix (ADM) �̂��� has the following perturbative expansion:

�̂��� �
X
k�0

�
�s���

4�

�
k�1

�̂�k�; (5)

where �s � g2
s=�4�� is the strong coupling constant.

The purpose of our present work is to evaluate the
entries of �̂�2� that correspond to the O��3

s� strong mixing
of the dipole operators of Eq. (3) containing quark fields.
These entries can be extracted from the three-loop QCD
renormalization constants in the effective theory. Lower-
order entries are already known from previous calculations
[1–5]. The three-loop QCD self-mixing of the electromag-
netic dipole operator coincides with the anomalous dimen-
sion of the rank-two antisymmetric tensor current that has
been calculated in Ref. [6]. We confirm all these findings.
Our remaining three-loop results are entirely new.

The main phenomenological motivation for our work is
to provide a new contribution to the calculation of the �B!
Xs� branching ratio at the next-to-next-to-leading order
(NNLO) in QCD. Including these O��2

s� corrections is
necessary to reduce the theoretical uncertainty of the SM
calculation [7] below the current experimental one [8].
Several steps in this direction have already been made
[9–11]. Our findings can also be relevant for the CP-odd
electric dipole moment of the neutron, provided the new
physics matching scale is sufficiently high.

Our calculation completes the three-loop QCD ADM for
the whole dimension-five part of the effective Lagrangian,
because the dipole operators in Eq. (3) are the only EOM-
4-1 © 2005 The American Physical Society
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FIG. 1. Typical examples of one-particle-irreducible diagrams
describing the self-mixing of Q7 at the one-, two- and three-loop
level.
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non-vanishing operators in this sector. Simultaneously, our
results establish the whole three-loop QCD ADM for the
j�Fj � 1 operators of dimensions five and six that arise in
the SM case—all other three-loop ADM entries for such
operators are known from previous publications [5,11,12].
The only ADM entries that remain to be calculated for
�B! Xs� at the NNLO in QCD correspond to the four-loop

mixing of certain four-quark operators into the dipole
operators [13].

For definiteness in the further discussion, we shall
choose the flavors, chiralities, normalization and names
of the dipole operators as it is usually done in the phe-
nomenological analyses of �B! Xs�, namely

Q7 �
e

16�2 mb��sL�
��bR�F��;

Q8 �
gs

16�2 mb��sL���TabR�Ga
��:

(6)

However, we stress that the 2� 2 ADM which we calcu-
late is the same for any pair of such quark dipole operators,
including the flavor-conserving ones. There is no mixing
between dipole operators of different flavor content, even
in the flavor-conserving sector [3,6].

In order to remove the divergences of all possible off-
shell one-particle-irreducible Green’s functions with single
insertions ofQ7 andQ8, we have to introduce the following
EOM-vanishing counterterms [3,5]

Q 6D 6D �
1

16�2 mb �sL 6D 6DbR;

Q 6DG6 �
igs

16�2 mb �sL� 6D�G6 
G6 6D�bR;
(7)

where D��@�� igsG�� ieQdA� and D� � � @�� 

igsG� 
 ieQdA� denote the covariant derivatives of the
gauge group SU�3�C �U�1�em acting on the fields to the
right and left, respectively, and we have used the definition
G� � Ga

�T
a for the matrix-valued gluon field. A� is the

photon field, and the color generators are normalized so
that Tr�TaTb� � �ab=2.

Notice that the operator Q 6D 6D is gauge invariant, while
Q 6DG6 is not. The appearance of such operators is expected
on general grounds [14,15]. In principle, one could also
encounter nonphysical counterterms that can be written as
Becchi-Rouet-Stora-Tyutin variations of some other opera-
tors, so-called BRST-exact operators. However, they turn
out to be unnecessary in the case of the dipole operator
mixing. This issue is discussed in more detail in
Refs. [3,5,11].

We perform the calculation using dimensional regulari-
zation and the MS scheme. As far as the matrix �5 is
concerned, its only relevant property in our case is
��5; ����� � 0, which, to our knowledge, holds in all
the commonly used schemes for the treatment of �5,
including the naive dimensional regularization and
t’Hooft–Veltman schemes. However, the ADM beyond
one loop in the dimensional reduction scheme is different
from the one we find here because this scheme does not
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coincide with standard dimensional regularization even in
the absence of �5. A description of the properties of the
naive dimensional regularization, t’Hooft–Veltman and
dimensional reduction schemes, as well as a list of relevant
original articles can be found in Ref. [16].

The necessary three-loop renormalization matrix is
found by calculating the one- and two-loop b! s, b!
s�, b! sg amputated Green’s functions with single in-
sertions of Q7, Q8, Q 6D 6D, and Q 6DG6 , as well as the three-
loop b! s� and b! sg amplitudes with insertions of Q7

and Q8. Sample diagrams are shown in Fig. 1. The cor-
responding one-, two- and three-loop amplitudes are
evaluated using the method that has been described in
Refs. [3,5,17]. We perform the calculation off shell in
an arbitrary R	 gauge, which allows us to explicitly check
the gauge-parameter independence of the mixing among
physical operators. To distinguish between infrared and
ultraviolet (UV) divergences, we introduce a common
mass M for all fields, expanding all loop integrals in
inverse powers of M. This makes the calculation of the
UV divergences possible at three loops, as M becomes the
only relevant internal scale, and three-loop tadpole inte-
grals with a single nonzero mass are known [17,18]. On the
other hand, this procedure requires taking into account
insertions of the nonphysical operators Q 6D 6D and Q 6DG6 , as
well as of the following counterterm of dimension three:

M2mb �sLbR: (8)

A comprehensive discussion of the technical details of the
renormalization of the effective theory and the actual
calculation of the operator mixing is given in Refs. [3,5].

Having summarized our method, we now present our
results for arbitrary numbers of down- and up-type quark
flavors denoted by nd and nu, respectively. The ADM
depends on the total number of active quark flavors nf �
nu � nd, and their ‘‘total’’ electric charge �Q � nuQu �
ndQd. The regularization- and renormalization-scheme in-
dependent matrix �̂�0� is given by

�̂ �0� �
32
3 0

32
3 Qd

28
3

 !
: (9)

While the matrix �̂�0� is renormalization-scheme inde-
pendent, �̂�1� and �̂�2� are not. In the MS scheme, we obtain

�̂ �1� �
1936

9 

224
27 nf 0

�368
3 


224
27 nf�Qd

1456
9 


61
27 nf

 !
; (10)
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and
�̂ �2� �

 1856

27 

1280

9 nf 0
640
9

�Q
 �1856
27 �

1280
9 nf�Qd 
 28624

27 

1312

9 nf

 !

�3�

�

307448
81 
 23776

81 nf 

352
81 n

2
f 0


 1600
27

�Q� �159872
81 
 17108

81 nf 

352
81 n

2
f�Qd

268807
81 
 4343

27 nf 

461
81 n

2
f

0
@

1
A: (11)
We remark that the explicit electric charge Qd originates
solely from the quarks in the operators, and thus has to be
replaced byQu for operators containing up-quark fields. As
it is characteristic for three-loop anomalous dimensions,
the entries of �̂�2� involve terms proportional to the
Riemann zeta function 
�3� � 1:20206.

Of course, the presence of the bottom quark mass in the
normalization of the dipole operators of Eq. (6) affects the
values of �̂�k�. Had we decided to define the operators
without quark mass in their normalization, the results in
Eqs. (9)–(11) would need to be replaced by ��k�ij 
 �

�k�
m �ij,

where

��0�m � 8; ��1�m �
404

3



40

9
nf;

��2�m � 2498

�
4432

27
�

320

3

�3�

�
nf 


280

81
n2
f

(12)

are the expansion coefficients of the quark mass anomalous
dimension. In particular, verifying that our result for ��2�77 is
in agreement with Eq. (8) of Ref. [6] requires performing
such a replacement because no quark mass is present in the
normalization of the tensor current considered there. We
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note that there is a misprint in the last line of Eq. (7) of the
latter paper. Obviously, the factor C2

F should read N2
f.

The renormalization group equation for the Wilson
coefficients given in Eq. (4) has the following general
solution

Ci��b� � Uij��b;�W�Cj��W�; (13)

where the matching and the low-energy scales have been
denoted by �W and �b, respectively. In the �B! Xs� case,
one has �W � O�MW� and �b � O�mb�. The evolution
matrix Uij��b;�W� depends on the strong gauge coupling
ratio � � �s��W�=�s��b�. The ADM that we have calcu-
lated allows us to find the complete O��2

s� contributions to

�C7��b� �
X
j�7;8

U7j��b;�W�Cj��W�; (14)

and

�C8��b� � U88��b;�W�C8��W�: (15)

Denoting these O��2
s� contributions by ��2�C7��b� and

��2�C8��b�, respectively, and using the general NNLO
formalism presented in Refs. [11,19], we obtain for nf �
5, Qd � 
1=3, and �Q � 1=3:
��2�C7��b� �

�
�s��b�

4�

�
2
�
�62=23C�2�7 ��W� �

8

3
��60=23 
 �62=23�C�2�8 ��W� 


37 208

4761
��39=23 
 �62=23�C�1�7 ��W�




�
7 164 416

357 075
�37=23 


297 664

14 283
�39=23 


256 868

14 283
�60=23 �

6 698 884

357 075
�62=23

�
C�1�8 ��W�

� �16:6516�16=23 
 61:0768�39=23 � 44:4252�62=23�C�0�7 ��W� � �36:4636�14=23 
 44:4043�16=23


 135:3141�37=23 � 146:6159�39=23 � 15:4051�60=23 
 18:7662�62=23�C�0�8 ��W�

�
; (16)

and

��2�C8��b� �

�
�s��b�

4�

�
2
�
�60=23C�2�8 ��W� 


64 217

9522
��37=23 
 �60=23�C�1�8 ��W� � �39:7055�14=23


 45:4824�37=23 � 5:7769�60=23�C�0�8 ��W�

�
: (17)
Explicit expressions for the relevant b! s� and b! sg
matching conditions

Ci��W� �
X
k�0

�
�s��W�

4�

�
k
C�k�i ��W�; (18)

can be found in Ref. [10].
Setting �s�MZ��0:118, mt�mt�mt��168:5 GeV,
�W�MW�80:425 GeV and �b�4:8 GeV, one obtains

��2�C7��b� �

�
�s��b�

4�

�
2
17:2 � 0:0051; (19)

and
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��2�C8��b� �

�
�s��b�

4�

�
2
6:4 � 0:0019: (20)

The correction in Eq. (19) causes a suppression of the �B!
Xs� branching ratio by around 3%. However, one should
bear in mind that the size of the correction depends
strongly on the exact value chosen for �W . Only the total
values of Ci��b� are guaranteed to become less �W-
dependent once more orders in their perturbative expansion
are being included. At the moment, no complete O��2

s�
expression for C7��b� is available because one and only
one element on the right hand side of Eq. (13) remains
unknown at this order, namely, the elementU72��b;�W� of
the evolution matrix that corresponds to the current-current
operator Q2 � � �sL��cL�� �cL�

�bL�. It is going to become
available once the calculation of the four-loop mixing of
the relevant four-quark into the dipole operators is com-
pleted [13].

To conclude: We have evaluated the complete three-loop
O��3

s� mixing among the dipole operators, that is, in the
whole dimension-five sector of the effective theory that
describes processes occurring much below the electroweak
scale. Our results are particularly relevant for the NNLO
analysis of radiative B decays in the SM and many of its
extensions.
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