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Nonperturbative Fixed Point in a Nonequilibrium Phase Transition
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We apply the nonperturbative renormalization group method to a class of out-of-equilibrium phase
transitions (usually called ‘‘parity-conserving’’ or, more properly, ‘‘generalized voter’’ class) which is out
of the reach of perturbative approaches. We show the existence of a genuinely nonperturbative fixed point,
i.e., a critical point that does not seem to be Gaussian in any dimension.
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Our understanding of equilibrium phase transitions is
largely due to the success of perturbative renormalization
group (RG) methods performed around some (upper or
lower) critical dimension dc and to the existence of inte-
grability and conformal symmetry properties in d � 2 [1].
The situation is far less satisfactory out of equilibrium,
where the relevant ingredients determining universality
classes are sometimes not even known [2,3]. There are a
number of technical reasons for this: (i) many systems
possess neither a lower dc nor a low-dimensional exact
solution; (ii) even at the critical point, models with a
Langevin-like dynamics, that is, those that involve only
one time derivative in their kinetic terms, cannot be con-
formal invariant; (iii) contrary to equilibrium, no RG cal-
culation is, in general, available at and above three-loop
order, and this prevents the use of series resummation
techniques to compute accurately universal quantities in
low dimensions. If, moreover, one keeps in mind that
features not accessible to perturbative RG methods may
play a crucial role, then the so-called nonperturbative
renormalization group (NPRG) approach appears as a
method of choice out of equilibrium.

Such nonperturbative effects were evidenced recently in
a study of the classic reaction-diffusion problem where
particles A diffuse, branch (A! 2A), and annihilate (2A!
;) with rates D, �, and � [4]. Whereas, in an important
work [5], Cardy and Täuber had shown that perturbative
RG calculations led to conclude that no finite-� transition
to the empty absorbing state is possible for d > 2, an
NPRG study at the nonuniversal level showed that such
absorbing phase transitions exist in any finite dimension
(with their critical properties in the directed percolation
class, as expected from perturbative RG).

In this Letter, we apply the NPRG method to a similar
class of absorbing phase transitions, one for which even the
universal properties are out of the reach of perturbative
approaches. We put forward the existence of a genuinely
nonperturbative fixed point, i.e., a critical point that does
not seem to be Gaussian in any dimension. Our calcula-
tions unveil the structure of the RG flow, reveal clearly why
perturbative methods are doomed to failure in this case,
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and provide estimates of critical exponents heretofore
accessible only via numerical simulations or series
expansions.

We actually treat two classes of systems known to be
equivalent in d � 1; the physical dimension where the
nonperturbative fixed point alluded to above is relevant.
The first group [6,7] includes the reaction-diffusion system
described above but where the branching reaction now
creates pairs of particles (A! 3A), so that, incidently,
the parity of the total number of particles is conserved.
Improperly named ‘‘parity-conserving’’ (PC) class (as ar-
gued in [8], where this conservation law was shown to have
no influence on similar reaction-diffusion systems), it is
best characterized by the second group of problems [9],
that of phase transitions into one out of two Z2-symmetric
absorbing states [10]. In d � 1, the particles of the PC
model can, indeed, be seen as interfaces between ‘‘�’’ and
‘‘�’’ domains [11]. In this ‘‘spin’’ language, domains
evolve and compete under Z2-symmetric rules with noise
acting only at interfaces, the definition of the ‘‘generalized
voter’’ (GV) class as given in [12].

The reaction-diffusion problem (A! 3A, 2A! ;) was
also studied in [5]. Using the Doi-Peliti formalism [13],
one can obtain the following microscopic action [5,6]:

S�	; �	� �
Z
x;t

�	�@t �Dr2
	� ��1� �	2
	2

� ��1� �	2
	 �	 (1)

in terms of the ‘‘physical’’ density field 	 and the associ-
ated response field �	. Cardy and Täuber first performed an
expansion around the upper critical dimension dc � 2
where the transition occurs at zero branching rate �, so
that the fixed point then is that of the pure annihilation
problem 2A! ;. They showed that this annihilation fixed
point remains relevant down to d � 4

3 (at one-loop order),
where it becomes also attractive in the � direction. In
another expansion, this time performed directly in d � 1,
they were able to identify an appropriate combination of
the coupling constants �;�, which does admit a fixed point
for d � 4

3 , although the flow diagram with respect to these
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original variables is rather peculiar. Even if their results do
suggest that a phase transition should exist at � � 0—as
observed in numerical simulations and mean-field-based
expansions of many microscopic models in d � 1 [7,9]—
the critical exponents remain poorly determined and,
worse, the very possibility of computations beyond one-
loop order appears to be problematic [5].

As for the GV class, the following Langevin equation
was recently proposed [11]:

@t	 � ���	��	3
�1�	2
 �Dr2	

�
������������������������
2��1�	2


q
� (2)

with 	 2 ��1; 1� and � is a delta-correlated Gaussian
noise of unit variance. The �1�	2
 factors, appearing
both in the deterministic force and in the noise amplitude,
impose 	 � 1 to be symmetric absorbing states. In d �
1, only one type of transition is observed by varying � for
any value of�, and its critical properties are, indeed, those
observed for the so-called parity-conserving models [14].
Taking � � 0 for the sake of simplicity, the generating
functional associated with the simplified Langevin equa-
tion is nothing but (1) where 	$ �	 and t! �t. Thus, at
this bare level, the two problems are strictly equivalent in
d � 1. We see later that this equivalence is preserved under
the RG flow.

We cannot detail here the implementation of the NPRG
but mention only the essential features of the method
[15,16]. The main idea is to build a one-parameter family
of models, indexed by a momentum scale k, interpolating
smoothly between the short-distance physics at the (micro-
scopic) scale k � �, where no fluctuation has been taken
into account, and the long-distance physics at scale k � 0,
where all fluctuations have been integrated out. In Wilson’s
original formulation, this leads to a flow of effective
Hamiltonians—for the slow modes—defined at scale k.
Following [15], we focus on the flow of ‘‘free energies’’ for
the rapid modes, jqj 2 �k;��, i.e., those already integrated
out at this scale. This is achieved by adding a masslike term
of order k2 to the slow modes (jqj< k), which ‘‘freezes’’
them. This mass term reads

	Sk�	; �	� �
Z
q;!
Rk�q

2
 �	��q;�!
	�q;!
; (3)

where a convenient choice [17] of ‘‘cutoff’’ function is

Rk�q
2
 � k2�1� q2=k2
��1� q2=k2
:

The ‘‘partition functions’’ Zk�J; �J� �
R
D	D �	 exp��S�

	Sk �
R
J	�

R
�J �	
 become therefore k dependent.

Through the Legendre transform of logZk�J; �J�, one ob-
tains the state function �k—analogous to the Gibbs free
energy at equilibrium—which depends on the fields  �
� logZk=�J and � � � logZk=� �J:

�k� ; � �� logZk�J; �J��
Z
J �

Z
�J � �

Z
Rk � : (4)
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Note that the last term in Eq. (4), proportional to Rk,
ensures that �k has the proper limit at k � �: �k�� � S
[15]. The following exact functional differential equation
governs the RG flow of �k under an infinitesimal change of
the scale s � log�k=�
 [15,18]:

@s�k �
1

2
Tr

Z
q;!
@sR̂k��̂

�2

k � R̂k
�1; (5)

where R̂k is the symmetric, off-diagonal, 2� 2 matrix of
element Rk and �̂�2


k � ; � � the 2� 2 matrix of second
derivatives of �k with respect to  and � . Obviously,
Eq. (5) cannot be solved exactly and one usually truncates
it. A standard truncation is the derivative expansion [15] in
which �k is expanded as a power series in r and @t. The
local potential approximation (LPA), which is the simplest
such truncation, consists in keeping only a potential term in
�k while neglecting any field renormalization (D is k
independent and could be scaled away):

�LPA
k �

Z
x;t
fUk� ; � 
 � � �@t �Dr2
 g: (6)

If the anomalous dimensions are not too large, the LPA
already provides a good description of the effective poten-
tial as well as a rather accurate estimate of the exponent �
governing the divergence of the correlation length. Since
our main goal is to identify the nonperturbative fixed point
governing the PC=GV transition in d � 1, we restrict
ourselves, in what follows, to the LPA [19].

The NPRG equation for the effective potential, valid for
all reaction-diffusion processes involving a single species,
has been established in [18]. Studying a particular model
amounts to solving this equation in a subspace defined by
the symmetries of the problem, starting with the corre-
sponding microscopic action S. The flow equation for the
dimensionless potential u � kd�2Uk, expressed in terms of
the dimensionless fields  ! k�d and � ! � , reads (to
lighten notations, we omit the implicit dependence of u on
the running scale):

@su � ��d� 2
u� d u�1;0


� Vd

�
1�

u�2;0
u�0;2


�1� u�1;1

2

�
�1=2

; (7)

where u�n;p
 � @n�pu
@n @p � 

and Vd �
2�d�1"�d=2

d��d=2
 . In our problem,

the effective potential must remain unchanged under the
simultaneous transformations  ! � and � ! � � (‘‘-
parity-conservation’’/Z2 symmetry of the PC=GV models)
[5,20]. This leads to the existence of three quadratic in-
variant quantities,  2, � 2, and  � , from which all other
invariant combinations of the fields can be built. Action (1)
can be expressed in terms of these invariants, but it also
possesses additional features: the potential of the micro-
scopic action S is proportional to 1� � 2 and vanishes for
 � 0 (in the PC language). One can check that this is also
true for @su once it is for u so that this structure is
preserved by the renormalization flow. This further con-
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FIG. 1 (color online). Variation with d of the eigenvalues of
the fixed points in the lowest-order LPA. Blue dashed lines: pure
annihilation fixed point FA. Red solid lines: nonperturbative
fixed point F� whose eigenvalues are both negative for 4

3< d <
1:3784 . . . and complex-conjugated at larger d (only the real part
is plotted).
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FIG. 2 (color online). Flow diagram of the lowest-order LPA
in d � 1 (as usual, arrows represent the RG evolution as s is
decreased towards the ‘‘infrared,’’ macroscopic limit k! 0).

PRL 95, 100601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
2 SEPTEMBER 2005
strains the functional subspace in which the running po-
tential evolves. To summarize, the structure of the running
potential defining our problem is

u� ; � 
 � �1� � 2
F � 2;  � 
 with F �0; 0
 � 0: (8)

Postponing the numerical resolution of the partial dif-
ferential Eq. (7) in the functional subspace defined above,
we now perform a Taylor series expansion of the potential.
In the absence of any information about the radius of
convergence, the point around which the expansion is
performed matters, all the more so since we want to
eventually truncate it. Here, we expand the potential
around a non-negative solution of the stationary equations
of motion @u

@ � 0 and @u
@ � 

� 0. The former is always sat-

isfied by � � 1, while the solutions of the latter then
correspond either to  � 0 (the ‘‘origin’’) or to a (running)
 > 0 (‘‘the minimum’’). We present results obtained
around the origin, which involve lighter equations than
those obtained around the minimum.

The simplest truncation, which we now analyze in some
detail, consists in keeping in u only the two coupling
constants already present in S. Inserting this ansatz in
Eq. (7), we obtain the following nontrivial flows for the
running constants [21]:

@s� � ���2� d
 � 2Vd
�2�1� 22�


�1� 2�
3
; (9)

@s� � �2�� 6Vd
��

�1� 2�
2
: (10)

This RG flow possesses three fixed points: the trivial,
Gaussian, fixed point FG (��

G � ��
G � 0), the annihilation

fixed point FA (��A � 2�d
2Vd

; ��
A � 0), and the nontrivial

fixed point F� of coordinates:

�� �
192

Vd�28� 3d
2
; �� �

4� 3d
56� 6d

: (11)

The Gaussian fixed point FG of eigenvalues �2; 2� d
 is
relevant above dc � 2, where it coincides withFA. For d 2

�43 ; 2�, FA, whose eigenvalues are �d� 2; 3d� 4
, is rele-
vant. At d � 4

3 , FA and the nontrivial fixed point F�

coincide and exchange stability, so that F� is the relevant
fixed point for d < 4

3 (Fig. 1). Note that then �� > 0, and
thus F� is in the physical region of parameter space,
whereas it plays no role for the physics of reaction-
diffusion systems when d > 4

3 . Note also that F� is not
Gaussian in any dimension (at least at this order), and is
thus out of the reach of any perturbative expansion. The
PC=GV fixed point in d � 1 is thus F�, a genuinely non-
perturbative fixed point. Its associated critical exponent,
given by the inverse of its negative eigenvalue is � �

12������
149

p
�7

’ 2:30. The flow diagram in this dimension is

shown in Fig. 2. The once unstable manifold of F�, con-
nected to FG, is the critical ‘‘surface’’ separating the ab-
sorbing and the active phases. The flow around FA is rather
peculiar: as d is decreased from 4

3 , the eigenvector of FA
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that is not parallel to the � axis rotates and becomes
parallel, in d � 1, to this axis. Thus, within the LPA, FA

is degenerate for d � 1, since its two eigenvectors coincide
(Fig. 1) [22]. This implies, in particular, that every point
flowing in the absorbing phase reaches FA along the � axis.
It is not clear to us, at this point, what might be the physical
signature of this for microscopic models.

We now report on the results obtained for truncations of
the potential u that go far beyond the simplest truncation
described above. Of course, there exist many ways to
organize a polynomial expansion of u around  � 0; � 2 �
1 in terms of the three quadratic invariants  � , 1� � 2,  2

which abides the Z2 symmetry of the PC=GV class.
Equivalently, because of Eq. (8), one can use any basis
spanned by monomials in  2;  � , and we have tried sev-
eral choices for it. In all cases, we stress that the qualitative
picture unveiled at the minimal level is preserved at higher
orders. It turns out that the fastest convergence of the
1-3



TABLE I. Values of exponent � with the order n of the LPA
truncation (see text). The column ‘‘Min’’ refers to the minimal
truncation ��;�
. The last column is a conservative estimate
taken from various Monte Carlo simulations.

n Min 3 4 5 6 7 8 9 MC

� 2.30 2.48 2.20 2.23 2.11 2.057 2.015 2.0017 1.85(10)
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exponent � is obtained with the basis, which is also the
more transparent from the physical point of view. At order
‘‘n,’’ we consider all possible branching �n� 2m
A! nA
and annihilating reactions nA! �n� 2k
A involving at
most n particles. These elementary reactions, respectively,
correspond to all the terms �1� � 2m
� � 
n�2m and �1�
� 2k
 n � n�2k, and are anyhow ineluctably generated under

renormalization. Table I shows the exponent � computed
up to order 9. The convergence is rather good, and we
deduce that within the LPA � � 2 0:1, already in fair
agreement with the results obtained in numerical simula-
tions. We finally report a rather surprising fact: at all orders
of the truncation, the dimension at which F� and FA cross
is d � 4

3 . On the other hand we know, from the perturbation
expansion performed around d � 2, that this dimension is
no longer 4

3 at two-loop order so that there is no reason to
believe that this value is an exact result. Thus the deviation
from 4

3 can come only from orders beyond the LPA in the
derivative expansion.

To summarize, we have shown, within the local potential
approximation of the NPRG, that the critical point of the
PC=GV class of absorbing phase transitions is a genuinely
nonperturbative fixed point, out of reach of perturbative
methods. This result will have to be refined within higher-
order approximation of the derivative expansion, so that a
full set of critical indices can be estimated, not just the
correlation length exponent �. Finally, ongoing work aims
at a full numerical simulation of Eq. (7) (for the current
problem and similar ones, such as the directed percolation
class), which should allow to fully confirm these results
and also offer access to other currently much debated
reaction-diffusion problems, such as the pair contact pro-
cess with diffusion [3].
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