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Loss-Tolerant Optical Qubits
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We present a linear optics quantum computation scheme that employs a new encoding approach that
incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but
uses techniques from cluster-state computation and achieves comparable resource usage. To illustrate our
techniques we describe a quantum memory which is fault tolerant to photon loss.
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Quantum logic gates can be built using linear optical
networks in a scalable manner, as shown by Knill,
Laflamme, and Milburn (KLM) [1]. A number of experi-
mental efforts are currently focused on testing the building
blocks of linear optical quantum computing (LOQC) [2–
5]. However, optimism for large scale quantum computa-
tion based on LOQC has been tempered by the major
overheads inherent in the KLM scheme and the high
detector and source efficiencies apparently required [1].
For example, KLM estimate that of the order of 10 000 op-
erations are needed per basic gate, and an efficiency thresh-
old of � 99%.

An alternative approach to implementing LOQC was
proposed by Nielsen [6] and further developed by
Browne and Rudolph [7] (see also [8] for related work).
This approach combines the model of cluster-state quan-
tum computation [9] with the nondeterministic gates pre-
sented by KLM, and achieves a very significant reduction
in the overheads. The fault tolerance of the scheme has also
been studied [10].

In this Letter we present a new approach to LOQC based
on an incremental parity encoding [11]. Our method com-
bines ideas from both the KLM and the cluster-state ap-
proaches. Parity encoding was used in the original KLM
proposal to protect against both teleporter failures (i.e., the
nondeterminism of the gates) and photon loss. By using
parity encoding but reencoding incrementally (instead of
by concatenation) we can obtain the reduction in overheads
characteristic of the cluster-state approach while retaining
the photon loss tolerance of KLM.

In particular we will describe a quantum memory which
is fault tolerant [12] to photon loss based on single photon
sources and detectors, linear optics, and feedforward.
Though our techniques for detecting and correcting loss
are themselves also subject to loss, above a particular
threshold efficiency the effect of loss can be negated to
arbitrary accuracy. A previous description of an optical
quantum memory based on error correction did not con-
sider fault tolerance [13]. Although we specifically only
consider memory, our construction is compatible with gate
operations and thus can form a template for fault tolerant
quantum computation with respect to photon loss. We will
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deal with qubits in three different tiers of encoding: physi-
cal encoding, parity encoding, and redundant encoding.
Parity encoding allows near deterministic operations and
converts photon loss to bit-flip errors. The redundant en-
coding then allows recovery from these errors.

Physical encoding.—At the first tier are the basic physi-
cal states that we will use to construct qubits, these will be
the polarization states of a photon so that j0i � jHi and
j1i � jVi. The advantage of this choice in optics is that we
can perform any single physical-qubit unitary deterministi-
cally, with passive linear optical elements. Of course, gates
between different physical qubits in LOQC are
nondeterministic.

Parity encoding.— At the second tier of encoding are
parity qubits encoded across many physical qubits. We
shall use the notation j i�n� to mean the logical state j i
of a qubit, which is parity encoded across n physical qubits,
i.e., n distinct spatial modes each containing 1 photon [14].

Specifically, the parity encoding is given by

j0i�n� � �j�i�n � j	i�n�=
���
2

p

j1i�n� � �j�i�n 	 j	i�n�=
���
2

p
;

(1)

where j�i � �j0i � j1i�=
���
2

p
. The main feature of this

encoding is that a computational basis measurement of
any one of the physical qubits will not destroy the logical
state, but instead will reduce the level of encoding by one.
A bit-flip correction may be needed as a function of the
measurement result.

Two operations are easily performed on parity encoded
states, one is a rotation by an arbitrary amount around the x
axis of the Bloch sphere [i.e., X� � cos��=2�I �
i sin��=2�X] [15], which can be performed by applying
that operation to any of the physical qubits; and the other
is a Z operation, which can be performed by applying Z to
all the physical qubits (since the odd-parity states will
acquire an overall phase flip). A key operation we will
use is the partial Bell state measurement [16,17]. This
consists of mixing two physical qubits on a polarizing
beam splitter followed by measurement in the diagonal-
antidiagonal basis. A successful event occurs when a pho-
ton is counted at each output of the beam splitter. An
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FIG. 1 (color online). A schematic of memory circuit.
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unsuccessful event occurs when both photons appear at one
of the outputs. When successful, it projects onto the Bell
states j00i � j11i. When unsuccessful, it projects onto the
separable states j01i and j10i, thus measuring the qubits in
the computational basis. This operation can be used to add
n physical qubits to a parity encoded state using a resource
of j0i�n�2�. We will refer to this as type-II fusion (fII) [7].
The result of type-II fusion is

fIIj i
�m�j0i�n�2� !

�
j i�m�n� �sucess�
j i�m	1�j0i�n�1� �failure�

: (2)

When successful (probability 1=2), the length of the parity
qubit is extended by n. A phase flip correction may be
necessary depending on the outcome of the Bell measure-
ment. If unsuccessful a physical qubit is removed from the
parity encoded state, and the resource state is left in the
state j0i�n�1� (which may be recycled). This encoding
procedure is equivalent to a gambling game where we
randomly either lose one level of encoding, or gain n.
Clearly if n � 2 this is a winning game.

The remaining gates in order to achieve a universal gate
set (a Z90 and a CNOT gate), can be efficiently performed on
the parity encoded states by making use of the encoder
above and will be described elsewhere [18]. The resource
overhead for performing gates in this way is approximately
equal to the best quoted for cluster-state encoding [7].

Redundant encoding.—The parity encoding has two
purposes. First, the nondeterministic gates which we will
employ, fail by measuring the qubit in the computational
basis (hence this code enables recovery from gate failures).
Second, loss of a photon can be considered a computa-
tional basis measurement in which we did not learn the
answer. Thus upon loss of a photon we know that the
remaining state is at worst a bit flipped version of the
original. The final level of encoding is a redundancy code
which enables recovery from this possibility of a bit flip:

j iL � �j0i�n�1 j0i�n�2 . . . j0i�n�q � �j1i�n�1 j1i�n�2 . . . j1i�n�q : (3)

We can create an ‘‘encoder’’ gate that correctly encodes
a parity qubit by simply fusing a more complicated re-
source state onto the parity qubit, namely,
j0ij0i�n�1 j0i�n�2 . . . j0i�n�q � j1ij1i�n�1 j1i�n�2 . . . j1i�n�q . We at-
tempt type-II fusion of this resource onto the parity qubit,
j i�n�, repeating until successful (on average twice) giving
the (phase-flip corrected) result

��j0i�n	k�j0i�n�1 . . . j0i�n�q � j1i�n	k�j1i�n�1 . . . j1i�n�q �

� ��j1i�n	k�j0i�n�1 . . . j0i�n�q � j0i�n	k�j1i�n�1 . . . j1i�n�q �;

(4)

where 0< k< n	 1 is the number of unsuccessful at-
tempts made before fusion was achieved. This state is
made up of qn ‘‘new’’ photons introduced by the resource
and n	 k of the ‘‘old’’ photons that made up the parity
10050
qubit. By measuring the old photons in the computational
basis and making a bit flip (on all new parity qubits if
needed), we obtain the expected encoded state [Eq. (3)].

Loss-tolerant qubit memory.—A schematic of the mem-
ory circuit for the example of a 2 qubit redundancy code is
shown in Fig. 1. The basic idea is as follows. The logical
qubit is held in memory for some time, during which a
photon may be lost. The logical qubit is then taken out of
memory and one of its constituent parity qubits, P2, is sent
into the encoder described above. The encoder performs
two tasks: (i) it adds another level of redundancy encoding
to the logical qubit and; (ii) it determines if a photon has
been lost, without determining the logical value of the
qubit. Figure 1(a) shows the procedure if no photons are
found to have been lost. The state straight after the encoder
is j iL � �j0i�n�1 j0i�n�2 j0i�n�3 � �j1i�n�1 j1i�n�2 j1i�n�3 . The other
parity qubit, P1, is now measured in the diagonal basis
j0i�n� � j1i�n�. This disentangles it from the other parity
qubits which are returned to the state of Eq. (3) by the
possible application of a phase flip (dependent on the out-
come of the measurement onP1). They are then returned to
memory as shown.

Figure 1(b) shows the procedure when the encoder finds
a photon missing in P2. Now the encoded state may have
suffered a bit flip and we may have the state j iL �

�j0i�n�1 j1i�n�2 j1i�n�3 � �j1i�n�1 j0i�n�2 j0i�n�2 . However, recovery
is possible by now measuring the modes produced by the
encoder in the diagonal basis. This disentangles P1 from
the other parity qubits without disturbing its logical value.
Importantly, the correct P1 is obtained regardless of
whether a bit flip occurred to P2, though again a phase
flip on P1 may be required dependent on the outcome of
the diagonal basis measurements. Finally, P1 is put
through an encoder, sent back to memory and the sequence
is repeated. This will correct photon loss errors in which up
to a single photon is lost per sequence. Higher levels of loss
can be tolerated by increasing the size of the redundancy
code placed in memory and generalizing the protocol. For
example, a 3 qubit code could be kept in memory and
3 qubit encoders used. Then two loss events could be
tolerated with recovery from the third qubit. We will
describe how the various operations required for the mem-
ory circuit can be achieved using only linear optics, feed-
forward, and Bell state resources.
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FIG. 2 (color online). PE for optimal q.
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Threshold.—First, consider the effect of photon loss in
the encoder. If a loss event occurs in the fusion process, that
is, only one photon is detected when a fusion is attempted,
then the process is aborted. The presence of the redundancy
code allows the following recovery. One of the remaining
old photons is measured in the diagonal basis. This disen-
tangles the entire parity qubit on which the encoder was
attempted from the other parity qubit as described earlier.
If fusion is successful, but a loss occurs while measuring
the old photons in the computational basis, then measure-
ment of any one of the remaining old physical qubits (or
indeed one from each of the new pair of encoded parity
qubits) will disentangle the other parity qubit which can
then be reencoded.

The probability that a parity qubit will be successfully
encoded, without photon loss, is given by PQs �
�n	1
i�1 �

1
2�1�2�

i�n	i1 , where the size of the original parity
qubit is n and the probability of detecting an old photon is
given by �1 � �d�s�m, for a detector efficiency of �d, a
photon source efficiency of �s, and a memory efficiency of
�m. The probability of successfully detecting a new photon
is given by �2 � �d�s. The photon source efficiency
appears in the detection efficiency of an old photon be-
cause a photon may have been missing from the resource
state used in the previous encoding sequence. Note that the
fusion process will succeed or fail with probability �1�2=2
and detect a photon loss with probability 1	 �1�2.

Now let us consider the case of complete (unrecover-
able) failure. This will occur if there is a sequence of fusion
failures and photon loss events which result in all of the
parity qubit component photons being lost without a suc-
cessful disentangling operation being carried out. The
probability of this occurring is given by

Pff �
Xn	1

j�1

�
1

2
�1�2

�
j	1

�1	 �1�2��1	 �1�
n	j

� R
Xn	2

j�0

�
1

2
�1�2

�
j�1 Xn	2	j

k�0

�k1�1	 �1�
n	1	j	k

�

�
1

2
�1�2

�
n	1

�1	 �1�: (5)

Where R � �q
k�1qk�1	 �2�

kn�1	 �1	 �2�
n�q	k and

takes into account failure to decouple using the new parity
qubits also (measuring the components in diagonal basis).
That leaves the probability that a photon loss occurs in the
encoding of one parity qubit, but that we successfully
disentangle it from the other parity qubit in the redundancy
code: PQf � 1	 PQs 	 Pff.

We can now calculate the threshold for the memory
circuit. There are two ways in which the circuit can suc-
ceed. First, one of the parity qubits can be encoded without
photon loss and then successfully disentangled from the
other. This will occur with probability PQs�1	 �1	 �1�

n�.
Second, a parity qubit can suffer photon loss but be suc-
10050
cessfully disentangled, whereupon another parity qubit is
successfully reencoded. This will occur with probability
PQfPQs. Thus the probability of one successful sequence
of the memory circuit for q parity qubits is

PE �
Xq	1

j�0

PjQfPQs�1	 �1	 �1�
n�q	1	j: (6)

Although for fixed n, limq!1PE � 0 and for fixed q,
limn!1PE � 0, numerical investigations indicate that it
is still possible to find n and q so that PE approaches one.

The optimal q can be found from d
dq PE � 0 and using

this value numerically we find that PE approaches one for
increasing n provided the threshold �> 0:82 is satisfied.
For efficiencies above about 0.96 a polynomial overhead in
the code size results in an exponential decrease in the
failure probability (1	 PE). For lower efficiencies the
overhead is exponential. In Fig. 2 we show the behavior
of PE for optimal q as a function of � and n.

Resources.—We now discuss the creation of the re-
source states used to implement our memory circuit and
hence the overheads needed. To this end we introduce a
second operation, the single-rail partial Bell measurement
[1]. This is achieved by mixing one of the polarization
modes from each of 2 physical qubits on a beam splitter
and counting photons at the outputs. A successful event
occurs when one and only one photon is counted, otherwise
it is unsuccessful. When successful it projects onto single-
rail Bell states in which a logical zero is represented by the
vacuum and a logical one by a single photon state. In terms
of dual rail qubits its effect is to project onto the states
�jHihHHj � jVihVVj�=

���
2

p
or �jHihHHj 	 jVihVVj�=

���
2

p

when successful, and measures each qubit in the computa-
tional basis when it fails. We will refer to this operation as
type-I fusion, (fI) [7].

We will take as our basic resource the Bell state j0i�2�.
Nondeterministic sources for such states are currently
available and considerable effort is being made to create
deterministic, or at least heralded sources of these states.
To create the state j0i�3�, two j0i�2� can be fused together
using the fI gate. When successful, the j0i�3� state is
1-3
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produced, when unsuccessful, both Bell states are de-
stroyed. With fI functions with a probability of 1=2, on
average two attempts are necessary, so, on average each
j0i�3� consumes 4j0i�2�.

Once there is a supply of j0i�3� states, either fI or fII can
be used to further build up the resource state via

�H �H�fIHj0i�n�j0i�m� !
�
j0i�m�n	1� �sucess�
	 �failure�

: (7)

and Eq. (2). Using fI with Hadamard gates has the advan-
tage of losing only a single qubit from the input states, but
the disadvantage of completely destroying the encoding in
both input states in the event of failure. Using fII to join the
input states is at the expense of losing two of the initial
qubits. There are two advantages to using fII—first, in the
case of failure, we do not destroy the encoding so-far
produced, just reduce this encoding by one and; second,
the operation is ‘‘fail safe’’ in that a detection loss event is
immediately recognizable as a failure (as 2 photons will
not be counted) in contrast to fI where photon loss can lead
to a false positive.

We can avoid the problem of the fI failure mode in the
following way. If fI gives a false positive it means that the
mode exiting the fusion gate does not contain a photon.
Thus our supply of j0i�3� states each have one ‘‘suspect’’
mode which may be vacuum. We now simply fuse two
j0i�3� with fI to form a j0i�5� using the suspect modes as the
fusion point. We now are able to produce a supply of j0i�5�

states which again have one suspect mode each. Finally, we
use fII to fuse two j0i�5� to produce a j0i�8�, once again
using the suspect modes as the fusion point. This final
fusion can not give a positive if a photon had been lost in
either of the previous fusion events. In this way we can
reliably produce the resource state j0i�8� regardless of
detection efficiency. Of course missing photons due to
finite source efficiency can still occur and are accounted
for by �s.

Using this approach and recycling fII failures carries an
average cost of approximately 44j0i�2� per j0i�8� where we
have assumed high detection and source efficiencies.
Producing the encoder resource requires first the produc-
tion of a j0i�3� onto which two j0i�8� are fused using fII. A
simple recycling strategy leads to a cost of approximately
169j0i�2� (not necessarily optimal). Increasing the redun-
dancy in the encoder resource requires only a linear over-
head, i.e., the resource state for a q-fold redundancy
encoder costs approximately �q	 1� � 169j0i�2�.
Increasing n similarly carries a linear overhead.

Conclusion.—In this Letter we have introduced optical
qubits with fault tolerance to loss under linear optical
manipulations. We numerically determine the threshold
for an optical memory based on these qubits to be 82%
efficiency. That is, in principle for efficiencies higher than
10050
this threshold, it is possible to find a suitable encoding such
that the probability of a successful sequence of the quan-
tum memory is arbitrarily close to 1. If we restrict our-
selves to two parity qubits, each encoded across five
physical qubits, and ask only when our quantum memory
works with higher probability than a passive memory, then
the answer is that the efficiencies of the sources and
detectors must exceed 96%. In principle demonstrations
of the parity code have been made [19,20]. Given the rapid
improvements in source and detector technology, demon-
strations of fault tolerance should be realistic in the me-
dium term.

We have shown that a dramatic reduction in resource
usage and increase in the threshold over the original
scheme is possible with our parity encoding. Although
we have only specifically discussed a quantum memory,
the techniques can be generalized to include gate opera-
tions. We expect a number of the techniques described here
could also be useful in optical quantum information pro-
cessing with nonlinearities and other quantum information
platforms.

We would like to acknowledge helpful discussions with
Bill Munro and Stefan Scheel.
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