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Diffusion Monte Carlo Method with Lattice Regularization
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We introduce an efficient lattice regularization scheme for quantum Monte Carlo calculations of
realistic electronic systems. The kinetic term is discretized by a finite difference Laplacian with two mesh
sizes, a and a0, chosen so that the electrons can diffuse in a configuration space which is in practice
indistinguishable from the continuum, and the different length scales in the system can be efficiently taken
in account. The regularized Hamiltonian goes to the continuous limit for a! 0 and allows the inclusion
of nonlocal potentials in a consistent variational scheme, substantially improving the accuracy upon
previous nonvariational approaches.
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In the last few decades, quantum Monte Carlo (QMC)
techniques [1] have proven very successful in studying
many-electron systems, mainly because within this frame-
work the electronic correlation can be explicitly included
in a many-body wave function (WF). Moreover, projection
QMC methods such as the diffusion Monte Carlo (DMC)
scheme can improve upon a given guiding WF �G by
stochastically projecting a state �FN much closer to the
exact ground state (GS) of the Hamiltonian H. �FN is
obtained within the fixed-node approximation (FNA),
which yields the lowest solution of the Schrödinger equa-
tion with the same nodes as �G. If �G is appropriately
optimized, the method usually provides a good upper
bound

EFN � h�FNjHj�FNi=h�FNj�FNi (1)

for the GS energy EGS. In a QMC calculation, one accesses
a mixed-average estimate of the total energy

EMA � h�GjHj�FNi=h�Gj�FNi; (2)

which coincides with EFN since �FN satisfies the equation
H�FN � EFN�FN within the nodal pockets of �G.

While the QMC methods can be extended to large
systems, the computational effort increases dramatically
with the atomic number Z. The most common way to
overcome this difficulty is to replace the core electrons
by a pseudopotential [2] VP, which is in most cases non-
local, i.e., hxjVPjx0i � 0 even when jx� x0j � 0, where x
denotes a spatial-spin configuration of all the valence
electrons. Consequently, the standard DMC approach can-
not be applied and the so-called locality approximation
(LA) is introduced [3–5], which approximates the nonlocal
potential VP with the local VLA�x� � hxjVPj�Gi=hxj�Gi.

A major disadvantage of the locality approximation is
that the expectation value EFN of the Hamiltonian H on the
fixed-node solution is no longer accessible since it does not
coincide with the mixed-average computed in a DMC
calculation. The fixed-node state �LA

FN is now the best
05=95(10)=100201(4)$23.00 10020
solution with the same nodes as �G for the approximate
Hamiltonian with potential VLA. Consequently, the esti-
mate ELA

MA � h�GjHj�
LA
FNi=h�Gj�

LA
FNi is no longer the

same as the expectation value of the Hamiltonian H on
�LA

FN . The only known property of ELA
MA is that it equals the

exact energy EGS if �G is exact. Otherwise, it is not
bounded by EGS and it gives no rigorous information about
the quality of �LA

FN . In particular, a lower ELA
MA may, in fact,

correspond to a worse solution �LA
FN , namely, with a higher

expectation value of the Hamiltonian H.
In this Letter, we present a lattice regularization of the

many-electron Hamiltonian which removes the above dif-
ficulties when using nonlocal potentials within the FNA.
We demonstrate the efficiency of our lattice regularized
DMC approach as well as its usefulness in cases where the
locality approximation yields inaccurate results.

Regularization of the Hamiltonian.—We consider the
Hamiltonian in atomic units:

H � �
1

2

X
i

�i � V�x�; (3)

where, for the moment, we assume a local potential. We
first approximate the Laplacian by a finite difference form
with two mesh sizes a and a0�>a�, where a=a0 is defined as
an irrational [6] number. The diffusion process based on
these two meshes overcomes the lack of ergodicity present
in a strict lattice evolution, and the electron coordinates f~rig
assume values practically indistinguishable from the con-
tinuum. Moreover, the scheme is designed to account for
the different length scales in the system by using the
smaller step a close to a nucleus and the larger a0 in the
valence region. As can be seen in Fig. 1, a double mesh
significantly increases the efficiency of the diffusion pro-
cess, yielding a large reduction of the step-size error com-
pared with the use of only one lattice.

Our discretized Laplacian has the following form:

�i � �a
i � �a;p

i � �a0;1�p
i �O�a2�; (4)
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FIG. 1. FN energies for the all-electron carbon atom computed
within DMC, LRDMC, and a LRDMC scheme where only one
discretization lattice is employed (LRDMC one lattice). The
lattice spacing a is here mapped to the time-step � as a �

���
�
p

.
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where �a;p is a Hermitian lattice operator defined by a
mesh size a, a constant �, and an arbitrary function p:

�a;p
i f�xi; yi; zi� � �=a2fp�xi � a=2��f�xi � a� � f�xi��

� p�xi � a=2��f�xi � a� � f�xi��g

� xi $ yi $ zi:

For p � � � 1, �a;p
i coincides with the usual discretized

form of the Laplacian on a lattice with mesh size a. The
constant � behaves as 1�O�a2� and is introduced to
reduce the error coming form the discretization of the
kinetic term: it is determined by requiring that the dis-
cretized kinetic energy is equal to the continuous one
calculated on the state �G, i.e., h�Gj�i�

a
i j�Gi �

h�Gj�i�ij�Gi. The function p �0 	 p 	 1� is instead
used to weight the contributions of the two meshes so
that the smaller step a is used close to a nucleus and the
larger a0 far away from the nuclei. The optimal function p
and ratio a0=a are found to be

p�~r� � 1=�1� Z2j ~r� ~Rj2=4�; (5)

a0=a �
��������������������
Z2=4� 1

q
; (6)

where ~R and Z are the position and the atomic number of
the nucleus closest to the electron in ~r.

To further improve the accuracy of the approximation
and work with larger values of a, we regularize also the
potential V ! Va by requiring that, for the chosen guiding
WF �G, the local energy hxjHaj�Gi=hxj�Gi of the
Hamiltonian Ha � � 1

2 �i�
a
i � V

a equals for each value
of a the local energy of the continuous Hamiltonian H.
This condition leads to the following solution for Va:

Va�x� � V�x� �
1

2

�
�i��

a
i � �i��G

�G

�
�x�: (7)
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Note that the correct limit Ha ! H for a! 0 is preserved
and that the regularization of V yields another important
property for Ha: if �G is an eigenstate of H, it is also an
eigenstate of Ha for any a, as can be easily derived using
that �a is Hermitian. Thus, by improving �G, a better a!
0 convergence is also expected.

Nonlocal pseudopotential.—We consider atomic pseu-
dopotentials with a nonlocal component of the form
�l	lmax

vl�j~rj�Pl, where Pl is the l-angular-momentum pro-
jection and the radial function vl is zero outside a given
core radius. The total nonlocal potential VP is obtained by
summing the contributions from all the electrons and
pseudoatoms.

Since the angular integration to evaluate the projection
Pl can be performed by a numerical quadrature on a regular
polyhedron defined by NV vertices [5,7], the nonlocal VP

acts on a configuration x by means of a finite number of
matrix elements equal to NVNcore, where Ncore is the num-
ber of electrons in the configurations x within the core
radius of a pseudoatom. Therefore, we can proceed as if
each atomic pseudopotential were by definition discretized
with NV points so that Va becomes

hx0jVajxi � Va�x��x;x0 � hx
0jVPjxi; (8)

where Va�x� is the local component of Eq. (7) and the
configuration x0 is defined on a mesh with steps determined
by the chosen numerical quadrature. In this way, we have
three meshes—the two kinetic meshes with steps a and a0,
and one pseudopotential mesh.

Lattice regularized diffusion Monte Carlo (LRDMC)
method.—Although Ha is a Hamiltonian defined on a
continuous space, all techniques valid on a lattice can be
straightforwardly applied here since Ha acts on a configu-
ration exactly as a lattice Hamiltonian, namely,

hxjHaj�Gi �
X
x0
Ha
x;x0 hx

0j�Gi; (9)

where, for a given x, the number of matrix elements Ha
x;x0

are finite even in the presence of nonlocal pseudopoten-
tials. In particular, we can resort to the same scheme used
in the efficient lattice Green function Monte Carlo algo-
rithm [8–10]. The corresponding transition matrix ele-
ments are Gx0;x � �G�x

0����x0;x �H
a
x0;x�=�G�x� and,

provided they are all non-negative, the positive distribution
�G�x��GS�x� is statistically sampled. Note that, since the
spectrum ofHa is not bounded from above, we need to take
the limit �! 1, which can be handled with no loss of
efficiency as described in Ref. [10].

Since the Green function Gx0;x can be made strictly
positive only for bosons, we have to introduce here the
analogous of the FNA on a lattice [8–10] and modify few
of the matrix elements of the Hamiltonian Ha. For each
configuration x, the matrix elements Ha

x0;x which yield
Gx0;x < 0 are set to zero and included in the so-called
sign-flip term, V sf�x� � �x0�x, �G�x0�Ha

x0;x=�G�x�> 0,
1-2
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FIG. 2. FN energies of the silicon pseudoatom computed
within DMC (ELA

MA) and LRDMC [EFN��; 0�] schemes. For
different pseudopotentials (Soft [18], Dolg’s [19] and Lester’s
[13]), we use as guiding WF’s a Hartree-Fock determinant with
no Jastrow, a two-body, and a three-body Jastrow factor. A more
accurate guiding WF corresponds to a smaller difference be-
tween the variational Monte Carlo (VMC) calculations and the
FN energies. The LRDMC energies are computed for � � 0:9
(filled triangles), � � 0:5 (open circles), and � � 0 (open
squares). The linear fits for the DMC and the LRDMC (� �
0:9) data are shown.
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which is then added to the diagonal element Ha
x;x [8]. The

resulting effective Hamiltonian Heff has the same local
energy as Ha and its GS WF has the same signs as the
guiding WF �G.

The GS energy of Heff can be efficiently computed with
the mixed-average estimator Eeff

MA which also equals the
mixed estimator for the Hamiltonian Ha:

Eeff
MA �

h�GjHeff j�eff
FNi

h�Gj�
eff
FNi

�
h�GjHaj�eff

FNi

h�Gj�
eff
FNi

(10)

where �eff
FN is the GS of Heff . For a local Hamiltonian H,

we recover the standard DMC result EMA � EFN in the
limit a! 0 as shown in Fig. 1.

When nonlocal pseudopotentials are included, the lattice
FN theorem [8] applied to Heff yields

EG 
 Eeff
MA 
 h�

eff
FNjH

aj�eff
FNi=h�

eff
FNj�

eff
FNi; (11)

where EG is the expectation value of the Hamiltonian H on
�G. The above relation is valid for each a and, therefore,
also in the limit a! 0 when Ha ! H. This important up-
per bound property does not generally hold in the DMC
approach.

Computation of EFN.—We now extend the effective
Hamiltonian Heff to include the parameters ��
 0� and �
�0 	 �< 1� [11]. The parameter � allows us to compute
the expectation value of the Hamiltonian Ha on the fixed-
node solution in the presence of nonlocal pseudopotentials
[Eq. (11)]. The parameter � sets the degree of localization
used in the effective Hamiltonian: it smoothly connects the
LA �� � 1� to the standard lattice FN approach described
above �� � 0� where the pseudopotential terms yielding a
non-negativeGx0;x are not approximated. The new effective
Hamiltonian H�;� is

H�;�
x;x � Ha

x;x � �1� ��V sf�x� � ��1� ��V
P
sf�x�;

H�;�
x0;x � ��H

a
x0;x if �G�x0�Ha

x0;x=�G�x�> 0;

H�;�
x0;x � �1� ��1� ���H

a
x0;x if �G�x

0�VP
x0;x=�G�x�< 0;

H�;�
x0;x � Ha

x0;x otherwise; (12)

where x0 � x and a new sign-flip term is introduced,
V P

sf�x���x0�x�G�x
0�VP

x0;x=�G�x�<0. This Hamiltonian
satisfies Gx0;x > 0 and reduces to Heff for � � � � 0.

To evaluate the expectation value of Ha on the GS
solution ��;�

FN of H�;�, we use the identity

EFN��; �� � EMA��;�� � ��� 1�
@EMA��;��

@�
; (13)

where EFN��;�� � h�
�;�
FN jH

aj��;�
FN i=h�

�;�
FN j�

�;�
FN i and

EMA��;�� � h�GjHaj��;�
FN i=h�Gj�

�;�
FN i. This relation is

obtained by using that Ha � H�;� � ��� 1�@�H�;� and
applying the Hellmann-Feynman theorem to the last term.
The best variational EFN energy is for � � 0 [11], which
we estimate by computing the derivative with respect to �
in an approximate but variational way:
10020
EFN��; 0� 	 EMA��; 0� � �EMA��;�� � EMA��; 0��=�;

(14)

where the equality sign holds in the limit of small �.
The parameter � is used to improve upon the local-

ity approximation and its value is optimized to yield the
lowest EFN��; 0�. Even though it is not guaranteed that
EMA��;�� is variational for �> 0, with the present
scheme we can evaluate the variational EFN��; 0� using
correlated sampling to compute EMA��;�� for � � 0 and
0<� 	 1=�� 1 as in Eq. (14).

Results and perspectives.—We have first tested the per-
formance of the LRDMC approach on the silicon pseudo-
atom using three Hartree-Fock pseudopotentials which
differ in the construction, functional form, and core radius.
For each pseudopotential, we employ three WF’s with the
same determinantal component and, consequently, the
same nodes, but with different Jastrow factors. We use no
Jastrow factor, a two-body, and a sophisticated three-body
Jastrow factor [12]. As shown in Fig. 2, the energy estimate
ELA

MA computed within DMC changes significantly with the
guiding WF �G, and differs from the variational expecta-
tion value, EFN��; 0�, which we compute with the LRDMC
scheme for � � 0, 0.5 and 0.9. For all cases, the statistical
uncertainty does not allow us to discriminate between the
LRDMC energies obtained for � � 0:5 and � � 0:9, and a
shallow minimum seems to lie between these two values.
The localization error is significantly reduced for optimal
EFN��; 0� and the weakest dependence on �G is obtained
for Lester’s pseudopotential [13], which has the smallest
1-3



TABLE I. Comparison of 4s23dn ! 4s13dn�1 excitation en-
ergy (eV) for the scandium atom.

LRDMC
� VMC DMC EMA��; 0� EFN��; 0� Expt.

2-body 0.0 1.099(30) 1.381(15) 1.408(12) 1.417(31) 1.43
2-body 0.5 1.099(30) 1.381(15) 1.394(11) 1.441(25)
3-body 0.5 1.303(29) 1.436(22) 1.448(9) 1.478(22)
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core radius in the nonlocal component. Interestingly, since
EFN��; 0� for � ’ 1 is very close to the minimum, the LA
seems to yield in this case good WF’s.

A stringent test case for our LRDMC algorithm is the
scandium atom: the LA for transition metals yields large
errors in the DMC total energies, and performs the worst
for the scandium atom [14]. As before, we keep the deter-
minantal part of the WF fixed, and employ a 2-body [15]
and a 3-body [16] Jastrow factor. The determinantal com-
ponent is an antisymmetrized geminal function expanded
over a (5s5p5d) Gaussian-type basis in order to cure near
degeneracy effects, and optimized in the presence of the
2-body Jastrow factor. We employ Dolg’s pseudopotential
[14] and compute the 4s23dn ! 4s13dn�1 excitation en-
ergy which is reported in Table I. It is apparent that the LA
does not only affect the DMC total energies but also the
DMC energy differences: the DMC excitation energy com-
puted with the 2-body Jastrow factor differs from the
experimental value by more than 3 standard deviations.
On the other hand, the LRDMC FN results are less sensi-
tive to �G, and are compatible with the experiment even
when a simple 2-body Jastrow factor is employed. Also the
LRDMC MA excitations appear to be closer to the experi-
mental value than the DMC ones.

Since estimating EFN��; 0� is computationally more de-
manding because of the need to evaluate two mixed-
average energies [Eq. (14)], a practical compromise is to
use EMA�0; 0� as energy estimate: EMA��; 0� at � � 0 is
variational and its computation is more efficient than the
DMC evaluation of ELA

MA. For pseudoatoms with large
effective atomic number such as iron and scandium, we
find that, due to the use of a double kinetic mesh within
LRDMC, the gain in efficiency over DMC is at least a
factor of 2. Moreover, we observe that a LRDMC simula-
tion with off-diagonal pseudopotentials is computationally
much more stable than DMC even when a very crude wave
function or a very large lattice mesh a are employed. The
reason for this greater stability is that the negative diver-
gences coming from the pseudopotentials close to the
nodes are converted to finite hopping terms in the
LRDMC scheme.

We have presented an efficient lattice regularization
scheme for QMC calculations on realistic electronic sys-
tems. The main advantage of the LRDMC approach is the
10020
possibility to work with nonlocal potentials within a fully
consistent and variational scheme which is much more
accurate than the standard DMC method. Moreover, this
projection method allows one to deal with several length
scales through the use of multiple lattice spaces, with great
reduction of autocorrelation times for heavy atoms or
complex systems. We believe that this framework can
have a wide spread of important applications ranging
from nuclear physics [17] to the chemistry of transition
metal compounds.
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