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Novel Public Key Encryption Technique Based on Multiple Chaotic Systems
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Public key encryption was first introduced by Diffie and Hellman in 1976. Since then, the Diffie-
Hellman key exchange protocol has been used in developing public key systems such as Rivest-Shamir-
Adleman and elliptic curve cryptography. Chaotic functions, so far, have been used for symmetric
cryptography only. In this Letter we propose, for the first time, a methodology to use multiple chaotic
systems and a set of linear functions for key exchange over an insecure channel. To the best of our
knowledge, this is the first Letter that reports the use of chaotic systems for public key cryptography. We
have shown that the security of the proposed algorithm grows as �NP�m, where N, P, and m are large
numbers that can be chosen as the parameters of the cryptosystem.
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Cryptography is the study or science of secret writing,
and a cryptosystem is a system in which either information
is transformed into secret writing (called ciphertext) or
ciphertext is transformed back to the above-mentioned
information (called plain text). The transformation process
just mentioned is controlled by what is called a ‘‘key.’’
Hence, to transform in either direction, the correct key is
needed. Simmons classifies cryptosystems as either sym-
metric (secret key) or asymmetric (public key) [1].

In a secret-key cryptosystem, private conversation be-
tween two persons is established by using one key, known
to both of them. This key is used for transformation to
cipher text (enciphering) as well as transformation back to
plain text (deciphering). A disadvantage of this scheme is
the fact that the secrecy of communication depends upon
the trustworthiness or reliability of the two persons.
Another disadvantage is that in a multichannel scenario
one has to keep a lot of keys secret to maintain private
communication with different people.

In a public key cryptosystem, there exist two separate
keys known as the enciphering key (to encipher) and the
deciphering key (to decipher). These keys decipher in such
a way that, knowing one of the keys, it is computationally
infeasible to determine the other key. This concept was first
introduced in 1976 by Diffie-Hellman in their seminal
paper [2].

In the past few years, many types of chaos-generating
systems have been proposed and analyzed in various fields.
Specifically, chaos functions have found applications in
cryptography as it can be used efficiently for random
number generation [3,4]. Many cryptosystems based on
chaos have been proposed recently [5–12]. These systems
are based on the characteristics of chaotic systems like
sensitivity to parameters and initial conditions, ergodicity,
and mixing property, which are analogous to the require-
ments of pseudorandom coding and cryptography [13,14].
Many of these systems have been shown to possess weak-
nesses and vulnerability [15–18]. Some insightful sugges-
tions have been proposed in [19–21], which recommend a
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focus of future research on the relationship of chaos and
cryptography. In [19], the authors have introduced a couple
of chaotic systems based on a pseudorandom bit generation
scheme and have shown that, apart from satisfying the
cryptographic properties, it compares well with conven-
tional random number generators [22,23].

Chaotic systems, so far, have been used only for sym-
metric cryptography (also called secret-key encryption)
where the same key is used for encoding and decoding.
This Letter deals with asymmetric key encryption (also
called public key encryption), which is often used to
exchange the symmetric keys. In this Letter we have
proposed, for the first time, a method for public key en-
cryption using a combination of chaotic systems and linear
systems. We have shown that the time taken to establish the
key is of order NP, whereas the time for the adversary to
break the system is �NP�m, where N, P, and m are large
numbers, defined by the user.

In 1976, Diffie and Hellman introduced public key
cryptosystem in their seminal paper [2], which initiated a
revolution in cryptography. They presented the first proto-
col with public keys, the so-called Diffie-Hellman (DH)
protocol for public key distribution. The protocol allows
two parties, Alice and Bob, who are connected by an
authenticated but otherwise insecure channel, to generate
a secret key, which is difficult to compute for an adversary
Eve overhearing the communication between Alice and
Bob.

The protocol works as follows. Let G be a finite cyclic
group with order jGj generated by g. In order to generate a
mutual secret key, Alice and Bob secretly choose integers
sA and sB, respectively, at random from the interval
�0; jGj � 1�. Then they compute secretly aA � gsA and
aB � gsB , respectively, and exchange these group elements
over the insecure public channel. Finally, Alice and Bob
compute aAB � asAB � gsAsB and aBA � asBA � gsBsA , re-
spectively. It may be noted that aAB � aBA, and hence
this quantity can be used as a secret key shared by Alice
and Bob. Figure 1 shows a mechanical analog of the Diffie-
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Hellman protocol [24]. This scheme has been used for
developing public key cryptosystems such as Rivest-
Shamir-Adleman [25] and elliptic curve cryptosystems
[26–28].

Chaotic functions have found applications in cryptogra-
phy, as it can be used efficiently for random number
generation [6,8,9]. These systems are based on the charac-
teristics of chaotic systems like sensitivity to parameters
and initial conditions, ergodicity, and mixing property,
which are analogous to the requirements of pseudorandom
coding and cryptography [13,14]. But, they have been
found to have some problems, which can be overcome by
using a couple of chaotic systems as suggested in [19]. We
next discuss, briefly, the system suggested in [19] and
extend it to a general case of multiple chaotic systems.

Assume there are two different one-dimensional chaotic
maps F1�x1; p1� and F2�x2; p2� such that x1�i� 1� �
F1�x1�i�; p1�, x2�i� 1� � F2�x2�i�; p2�, where p1, p2 are
control parameters, x1�0�, x2�0� are initial conditions, and
fx1�i�g, fx2�i�g denote the two chaotic orbits.
FIG. 1. A mechanical analog of the Diffie-Hellman protocol.
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Define a pseudorandom bit sequence ki �
g�x1�i�; x2�i��, where

g�x1; x2� �

8><
>:
1; if x1 > x2;
no output; if x1 � x2;
0; if x1 < x2:

(1)

Subject to certain requirements [19], the above generated
sequence will have good cryptographic properties, and it is
called ‘‘a couple of chaotic systems based pseudorandom
number generator’’ (CCS-PRNG).

This can be generalized to the case of m chaotic maps.
Let there be m different chaotic maps F1; F2; . . . ; Fm de-
fined as x1�i� 1� � F1�x1�i�; p1�, x2�i� 1� �
F2�x2�i�; p2�; . . . ; xm�i� 1� � Fm�xm�i�; pm�, where
p1; p2; . . . ; pm are control parameters,
x1�0�; x2�0�; . . . ; xm�0� are the initial conditions, and
fx1�i�g; fx2�i�g; . . . ; fxm�i�g denote the m chaotic orbits.

Define a pseudorandom sequence ki �
g�x1�i�; x2�i�; . . . ; xm�i��, where
g�x1; x2; . . . ; xm� �

8>>>>>>>>>><
>>>>>>>>>>:

1; if x1 > x2; x1 > x3; . . . ; x1 > xm;
2; if x2 > x1; x2 > x3; . . . ; x2 > xm;

..

.

r; if xr > x1; xr > x2; . . . ; xr > xm;

..

.

m; if xm > x1; xm > x2; . . . ; xm > xm�1:

(2)
Note that when there are two or more largest values in the
set, the one with the lower index is chosen. It can easily be
shown that this sequence will also have good cryptographic
properties. We call this the ‘‘m-chaotic systems based
pseudorandom number generator’’ (m-CS PRNG).

We first describe how to use a couple of chaotic systems
(CCS) in conjunction with DH protocol for key exchange.
Later we shall generalize it for m-CS. Suppose Alice and
Bob wish to agree upon a key that will later be used in
conjunction with a classical cryptosystem. They decide on
a starting value x0 and two linear functions f1�x� and f2�x�.
The linear functions satisfy the condition f1 � f2 � f2 �
f1, and therefore the sequence of operation does not matter.
Define a selection function, h�x; k�, as follows:

h�x; k� �
�
f1�x� if k � 0;
f2�x� if k � 1:

(3)

We can then write the iterative form as

xi � h�xi�1; ki�: (4)
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FIG. 2 (color online). The proposed key exchange protocol
using CCS.
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The key exchange algorithm based on CCS is described
below.

Step 1: Alice and Bob, who wish to exchange the key,
publicly agree on a common CCS, two linear functions
f1�x� and f2�x�, and a start value x0, as depicted in Fig. 2.

Step 2: Alice secretly chooses two seeds sA1 and sA2 and
a large number nA and uses them as inputs to a CCS PRNG
to generate a random bit sequence, kiA, based on Eq. (1). nA
is the number of bits in the sequence generated. This
sequence kiA is provided as input to Eq. (4), along with
x0 to iterate and give resultant xnA. The number nA can be
varied to vary the security level of the system, as we shall
show later. Alice publishes xnA as her public key.

Step 3: In a similar fashion, Bob secretly chooses two
seeds sB1 and sB2 and a large number nB to generate a bit
sequence, kiB, to use in conjunction with x0 to generate his
public key xnB, which he publishes.

Step 4: Alice takes Bob’s public key xnB and, using it as
the seed and taking the same sequence, kiA, as generated
earlier, performs another nA iteration to obtain xnB�nA.

Step 5: Similarly, Bob takes Alice’s public key xnA and,
taking it as the seed and the same bit sequence, kiB, as
generated by him earlier, performs another nB iteration to
get xnA�nB.

The important point to note is that since f1�x� and f2�x�
are linear functions, i.e., they satisfy the condition f1 �
f2 � f2 � f1, therefore the sequence of operation does not
matter. So the resultant iterations of the two sets are equal,
i.e., xnB�nA � xnA�nB. This value obtained can now be
suitably mapped to a common key K, which can then be
used to communicate over the insecure channel.

It should be observed here that the start value x0 can be a
vector, and, hence, the common key will also be a vector.
An example of a linear function that operates on a vector
�x0� could be the fast Fourier transform (FFT).
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The following example illustrates the algorithm. Let the
two linear functions be f1�x� � FFT�x� and f2�x� � 1:5x.
Let the start value x0 � �0:06 0:35 0:81 0:01 0:14�. This is
randomly chosen by one of the parties (Alice or Bob) and
made public. Let the CCS, used by both Alice and Bob, be

F1�x1� � 4x1�1� x1� and F2�x2� � 3:98x2�1� x2�:

(5)

Alice secretly picks a number nA � 10, and Bob secretly
picks a number nB � 12. Here small values of nA and nB
have been used to illustrate the point. Alice secretly picks
and uses the seeds f0:83; 0:34g for the CCS to generate her
random bit stream

kA � � 1 0 1 0 1 1 0 1 0 1 �: (6)

The length of the bit stream is nA. Here, the initial con-
ditions (seeds) do not have to be communicated to the other
party. Similarly, Bob secretly picks and uses the seeds
f0:47; 0:61g for the CCS to generate his random bit stream

kB � � 0 1 0 0 0 1 1 0 0 1 1 1 �: (7)

The length of the bit stream is nB. Next, Alice operates the
function f1�x� � FFT�x� or f2�x� � 1:5x on x0, depending
on whether a ‘‘1’’ or a ‘‘0’’ is encountered in the bit stream,
kA. Alice then publishes the resulting output as her public
key

xnA � � 36:63 87:89 6:26 514:60 223:31 �: (8)

The application of FFT an even number of times yields a
real output. Similarly, Bob uses kB and x0 to generate his
public key

xnB � � 82:44 197:77 14:10 1157:86 502:47 �: (9)

Now, Alice takes xnB and uses kA to generate the secret key
xnA�nB �
h
52168:84 317968:63 732706:40 8920:06 125151:16

i
; (10)
which is identical to the key, xnB�nA, obtained by Bob by
using xnA and kB. Thus, Alice and Bob are able to exchange
a secret key successfully.

We now generalize the case for the m-CS PRNG. In
this case, we have m linear functions,
f1�x�; f2�x�; . . . ; fm�x�, and the corresponding selection
function is defined as

hm�x; k� �

8>>>><
>>>>:

f1�x� if k � 1;
f2�x� if k � 2;

..

.

fm�x� if k � m:

(11)

We can then write the iterative form as

xi � hm�xi�1; ki�: (12)
The key exchange algorithm based on m-CS is described as
follows.

Step 1: Alice and Bob, who wish to exchange the key,
publicly agree on a common m-CS, m linear functions
f1�x�; f2�x�; . . . ; fm�x� and a start value x0.

Step 2: Alice secretly chooses m seeds sA1; sA2; . . . ; sAL
and a large number nA and uses them as inputs to an m-CS
PRNG to generate a random sequence of numbers, kiA, as
given by Eq. (2). nA is the length of the sequence gener-
ated. This sequence kiA is provided as input to Eq. (12)
along with x0 to iterate and give resultant xnA. Alice pub-
lishes xnA as her public key.

Step 3: In a similar fashion, Bob secretly chooses m
seeds sB1; sB2; . . . ; sBL and a large number nB to generate a
sequence of number, kiB, to use in conjunction with x0 to
generate his public key xnB, which he publishes.
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Step 4: Alice takes Bob’s public key xnB and, using it as
the seed and taking the same sequence, kiA, as generated
earlier, performs another nA iteration to obtain xnB�nA.

Step 5: Similarly, Bob takes Alice’s public key xnA and,
taking it as the seed and the same sequence, kiB, as gen-
erated by him earlier, performs another nB iteration to get
xnA�nB.

It should be observed that the initial conditions for the
m-CS are chosen locally by both the parties, as shown in
steps 2 and 3 of the algorithm. There is no requirement of
communicating the initial conditions. Thus the choice of
the initial conditions does not complicate the implementa-
tion. The choice of different initial conditions changes only
the random bit sequence being generated by the m-CS.
Since the two parties do not have to communicate their
initial conditions, the algorithm does not get affected by
the problem of synchronization. The algorithm can be
easily implemented in software as well as in hardware.

In order to break the system, one has to solve the Diffie-
Hellman problem, i.e., finding xnA�nB from xnA and xnB.
If the linear functions f1�x�; f2�x�; . . . ; fm�x� are suitably
chosen, one cannot easily guess the constituent opera-
tions that convert the seed x0 to the public keys xnA
and xnB. The only viable attack is the brute force attack,
where the adversary has to try all the possible combina-
tions of sequences. Let the value nA and nB be chosen in the
range �0; N�. Let each of the linear functions f1�x�;
f2�x�; . . . ; fm�x� require on the order of P floating point
operations to execute. Then, in order to establish the key
(by Alice or Bob), it requires on the order of NP floating
point operations. However, the adversary has to decide for
every number in the sequence which of the linear functions
to use. Therefore, the complexity to break the cryptosys-
tem is on the order of �NP�m. This technique provides three
independent design parameters to fix the security of the
cryptosystem: (i) The size of the key, N. (ii) The computa-
tional complexity of the linear functions, P. (iii) The num-
ber of linear functions, m.

In conclusion, we have proposed a novel technique for
public key encryption using multiple chaotic systems. This
is the first time chaotic systems are being used for public
key encryption (asymmetric cryptography). The problem
of synchronization between different chaotic systems has
been circumvented. We have shown that the security of the
proposed algorithm grows as �NP�m, where N, P, and m
are large numbers that can be chosen, independently, as
parameters of the cryptosystem. The proposed algorithm is
practical and can be easily implemented in software as well
as in hardware.
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