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Trading Interactions for Topology in Scale-Free Networks
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Scale-free networks with topology-dependent interactions are studied. It is shown that the universality
classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning
the interactions. A mapping, �0 � �����=�1���, describes how a shift of the standard exponent � of
the degree distribution P�q� can absorb the effect of degree-dependent pair interactions Jij / �qiqj�

��.
The replica technique, cavity method, and Monte Carlo simulation support the physical picture suggested
by Landau theory for the critical exponents and by the Bethe-Peierls approximation for the critical
temperature. The equivalence of topology and interaction holds for equilibrium and nonequilibrium
systems, and is illustrated with interdisciplinary applications.
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In this Letter, we pose and answer the following funda-
mental questions. What are the relevant variables that
determine the universality classes of critical behavior in
networks? Is the conventional classification based on the
exponent � of the distribution function of network con-
nections P�q� sufficient? What is the effect on the critical
behavior of interactions that depend on the connectivity?
Do the interactions give rise to new relevant variables or
can these be ‘‘transformed away’’ topologically? We focus
on scaling arguments and analytic approaches [1].

Nowadays, scale-free networks enjoy a lot of attention
due to their ubiquitous occurrence and the suitability of
modern computational techniques for understanding their
properties and predicting their behavior [2]. These net-
works typically have simple topology. The usual notions
of spatial coordinates and dimensionality are not present;
e.g., while the ‘‘volume’’ scales as the number of nodes N,
the largest distance or ‘‘diameter’’ grows no faster than
logN, suggesting infinite ‘‘dimension.’’ This is why mean-
field or Landau theories are successful.

Understanding critical phenomena in scale-free net-
works is of fundamental and practical relevance. There is
a surprising diversity of ‘‘mean-field’’ universality classes,
which are topology dependent [3]. However, for most real
networks and for the simplest interactions between nodes,
the critical point is inaccessible (e.g., Tc � 1). We pro-
pose a way around this by tuning the interactions.

Without loss of generality, consider first the context of
opinion formation in ‘‘sociophysics’’ [4]. The network
consists of people. Opinions are represented by spin ori-
entations, and communication by pair interactions. The
statistical physics of the formation of a common opinion
is akin to that of spontaneous symmetry breaking below a
05=95(9)=098701(4)$23.00 09870
critical temperature Tc in a Hamiltonian model for equi-
librium cooperative phenomena [5].

Putting Ising (or Potts) spins si on the nodes i �
1; . . . ; N and ferromagnetic interactions J on the edges
leads to interesting critical behavior, different from its
counterpart in lattice spin models [3,6]. For the standard
scale-free distribution P�q� / q�� of the number of con-
nections or ‘‘degree’’ of a node, the decay exponent � is the
key parameter distinguishing the universality classes.
Standard mean-field critical behavior (� � 0 for the spe-
cific heat, � � 1=2 for the order parameter, and �sus � 1
for the susceptibility) is predicted for � > 5. Logarithmic
corrections appear at � � 5. For 3<�< 5 the critical
exponents � and � are nonuniversal; they depend on �.
The susceptibility exponent �sus � 1 is superuniversal.
Conventional finite-size scaling (as a function of network
size N) predicts the familiar constraint �� 2�� �sus �
2. For � 	 3, however, the framework of finite-
temperature critical phenomena breaks down as Tc moves
to infinity.

Which values of � apply to real scale-free networks?
Most studied ones, including WWW, Internet, collabora-
tion, citation, cellular, ecological, or linguistic networks
have 2 	 � 	 3. The Barabási-Albert (BA) network,
grown by preferential attachment, has � � 3.

The initial motivation for introducing degree-dependent
interactions Jij 
 J�qi; qj� was to prevent Tc from diverg-
ing in the Ising model on the BA network [5] by compen-
sating high connectivity with weak interaction through
Jij / 1= ���������qiqj

p [7]. Further work has led us to observe
that this interaction is equivalent to a q-independent J,
provided � is shifted from 3 to 5. A Landau-theoretic
argument and a mean-field ansatz generalize this equiva-
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lence (see further) and provide the insight that interactions
that depend on connectivity effectively modify the topo-
logical distribution P�q�.

We introduce a family of interactions parametrized by
an exponent �,

Jij � Jhqi2��qiqj�
��; (1)

where h�i denotes the average over the degree distribution
P�q�. Generalizing the Landau theory of Goltsev et al. [3],
we obtain the following form, in zero external field, for the
‘‘free energy’’ � as a function of the order parameter x 
P
iET�si�=N, with ET��� the thermal average:

��x� � h��q��x; q1��x�i; (2)

where the first argument of the constrained free energy� is
the rescaled order parameter, and the second one is the
rescaled effective field acting on a node with q connec-
tions. Both rescalings, by a factor q��, come from the qi
and qj dependence of Jij. The crucial assumption [3] is that
��y; z� can be written as a power series in y and z. The
singularity structure of ��x�, leading to fascinating devia-
tions from standard mean-field behavior, is then induced by
the fact that the moments hqni diverge for n � nc � �� 1.
This in turn leads to a divergence of the coefficient fn of xn

in the free energy. Thus, in this system nonclassical critical
behavior is possible, not due to spatial fluctuations of the
order parameter (since space is effectively infinite dimen-
sional), but due to the scale-free character of the degree
distribution.

Our main result is that a network with exponents ��;��
can be mapped onto one with ��0; �0 � 0�, in the sense that
both are in the same universality class of critical behavior.
The latter has constant couplings, independent of q. We
find the exponent relation

�0 � �����=�1���; (3)

which can be proven as follows. The critical value n � nc
for diverging coefficients fn in the free energy must be the
same in order for the two models to be equivalent. Since
the leading moment hqni in fn in the model with � � 0
gets replaced by hq�1���ni in the model with � � 0, we
obtain nc � �0 � 1 � ��� 1�=�1���.

A more general ‘‘mean-field’’ proof, which does not rely
on a free energy, runs as follows. Within a mean-field
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approach, the only way in which the degree q enters in
physical properties is through the quenched average inter-
action, over all networks, between any two nodes with
fixed degrees qi and qj. This average is Jijpij, with pij �
qiqj=�hqiN� the probability that i and j are connected.
Note that even for constant J (case � � 0) the quenched
average interaction is q dependent, while for � � 1 it is
not. For � � 0, the qi are transformed to q0i � q�1���i ,
using (1). In order to retain the same physics, averages
over the degree distribution must be invariant. This re-
quires a distribution transformation,

P�q� � P0�q0�q��dq0�q�=dq; (4)

from which (3) follows for scale-free (power-law) P�q�.
Consequently, for a scale-free network the range � 2

�2� �; 1� allows one to explore the whole range of uni-
versality classes uncovered in previous works. It is no
longer necessary to vary the network topology. It suffices,
for a fixed �, to tune the form of the interaction. An
important consequence is that for real scale-free networks,
with typically � 	 3, one is no longer set back by an
infinite critical temperature when putting on interactions.
For the BA network the limit �! 1 maps onto �0 ! 1
and corresponds to the crossover to a thin-tailed degree
distribution of, e.g., Poisson type. In the opposite limit,
�! �1, for which �0 ! 2, the threshold is reached be-
yond which the first moment hqi diverges in the equivalent
network with constant couplings.

For locating the critical temperature, a Bethe-Peierls
(BP) approximation, which emphasizes the local Cayley
treelike structure of the network, normally gives a very
reasonable first approximation [6]. The entropic contribu-
tion to the free energy is truncated to single-spin and pair
terms [8]. Besides this standard assumption, we impose a
new scaling relation on the local order parameter, ET�si�, in
a given network. This scaling is in harmony with the
definition of the effective field acting on si in the Landau
theory and is corroborated by Monte Carlo simulation
(MCS). It reads

ET�si� � q1��i x=hq1��i: (5)

Using this to eliminate si in terms of qi and x, one obtains
the self-consistent BP equation near Tc,
hqi
X
q

P�q��q� 1�q1�� �
X
q1

P�q1�q
2��
1

X
q2

P�q2�q2

�
1� tanh

Jhqi2�

kBTq
�
1 q

�
2

�
�1
: (6)

For the conventional case � � 0, we can extract from this the large-hqi approximation kBTc=J � hq2i=hqi � 1, in
agreement with exact results [6].

We now turn to illustrations of this framework and start with � � 3 and � � 1=2 (‘‘Special Attention Network’’ [7]).
We discuss the critical point, specific heat, order parameter, and susceptibility.

The critical temperature versus average degree hqi is shown in Fig. 1, for hqi � 2, 4, and 6. It has been derived by exact
solution of the model using the replica technique. Since all couplings are ‘‘ferromagnetic,’’ the replica symmetry is not
broken. For comparison, the almost coincident results from the BP approximation (6) are also indicated. A good rule of
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FIG. 3. Specific heat from the cavity method for BA networks,
with � � 1=2 and hqi � 4. Shown are data for N � 102

(squares), N � 104 (triangles), and N � 106 (stars). Lines are
guides to the eye. The finite-size critical temperature (apparent
from the jump in C) rapidly converges for large N, to kBTc=J �
2:92 [Eq. (6)]. Clearly, the maximum in C precedes Tc and the
jump in C tends to close for large N.

FIG. 2. Specific heat from MCS of BA networks (� � 3), with
� � 1=2 and hqi � 10. The critical temperature in the large-N
limit is kBTc=J � 8:96 [Eq. (6)]. For N � 5600, MCS of the
susceptibility maximum indicates kBTc�N�=J � 8:65, well
above the temperature of the specific heat maximum.

FIG. 1. Tc versus hqi for a scale-free network with � � 3 and
� � 1=2. BP estimates (solid squares) almost coincide with
exact results (replica technique, open stars). The solid line is
the lattice BP approximation for Q � hqi, and the dashed line is
the mean-field approximation.
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thumb is kBTc=J � hqi � 1. Incidentally, this is also the
result of the large-hqi expansion which can be derived from
(6). Interestingly, the results are very close to the conven-
tional BP approximation J=kBTc � 0:5 ln��Q� 2�=Q�
(thin solid line), for a regular lattice with coordination
number Q, except for Q � 2. For completeness the
mean-field conjecture [7] kBTc=J � hqi is also shown.

These calculations assume no correlations exist between
the edges of the network. The rule of preferential attach-
ment violates this assumption, so the BA network must be
considered separately. For the special case hqi � 2, a BA
network differs strongly from a correlation-free network.
The former consists of a single treelike structure without
loops, whence Tc � 0. In contrast, an uncorrelated net-
work with hqi � 2 can consist of clusters, which can have
loops, leading to a finite Tc, as replica technique and BP
approximation predict.

Having located the critical temperature, and elucidated
its nonuniversality through its dependence on hqi and on
the network correlations, we now turn to more universal
properties. The specific heat singularity for the Ising model
on scale-free networks has a very interesting and subtle
form [6]. For � � 0, it varies from a classic mean-field
jump, predicted for � > 5, to a continuous behavior but
with diverging slope, for 4<�< 5, and with continuous
slope for 3< �< 4. For� � 1=2, the equivalence relation
[Eq. (3)] predicts, with � � �T � Tc�=Tc,

Csing / �ln��1��1: (7)

The shape of this specific heat near Tc is astonishingly
different from that of the conventional mean-field jump.
Although the critical exponent � consistent with (7) is
zero, as for standard mean field, the inverse logarithm
ensures a vanishing jump, with diverging slope.

Evidence gathered from MCS and, more convincingly,
the cavity method shows that (i) the specific heat C�T�
reaches a maximum well below Tc and (ii) the jump
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singularity that is apparent for small network size N closes
slowly when N is increased. These findings are consistent
with (3), and suggest that, for � � 3 and � � 1=2, the
network indeed maps onto one with � � 5 and �0 � 0.

Figures 2 and 3 illustrate these results for the speci-
fic heat, for a BA network with � � 1=2. Shown are
MCS (Fig. 2) for hqi � 10 and N � 5600, and the cavity
method (Fig. 3) for hqi � 4, applied to the sequence
N � 100; . . . ; 106. The latter technique clearly suggests
the slow closing of the specific heat jump, for N ! 1.

We have also computed the order parameter (‘‘magne-
tization’’) and susceptibility singularities near Tc and find,
for � � 1=2, that the results are consistent with � � 1=2
and �sus � 1. Again, these values agree with the predic-
tions from the mapping (3). It should be remarked that for
� � 5 and � � 0 a logarithmic correction factor is pre-
dicted for the order parameter, which, however, cannot
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FIG. 4. Specific heat from the cavity method for BA networks,
with � � 1=3 and hqi � 4, for N � 102 (circles), N � 103

(squares), and N � 105 (stars). A linear T dependence develops
for large N and meets the high-T background with a jump in
slope at Tc. The finite-size critical temperature converges to
kBTc=J � 4:21 [Eq. (6)].
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easily be detected on top of the square-root singularity� �
1=2. Furthermore, our result for �sus is not discriminative,
since �sus � 1 is superuniversal, valid for all � > 3 in the
model with � � 0.

Further evidence for (3) is obtained for the interesting
case � � 3 and � � 1=3. A linear specific heat (� � �1)
and a linear order parameter singularity (� � 1) clearly
emerge for largeN in cavity method computations (Fig. 4).
MCS of specific heat (Fig. 5), order parameter, and sus-
ceptibility supports this conclusion. The results agree with
what is expected for �0 � 4 and �0 � 0.

Additional evidence for (3) comes from a study of net-
works with � � 3 and � � 1. Using MCS and cavity
method, the standard mean-field jump of the specific heat
is retrieved. This is consistent with a shift of � to a value
greater than 5 in the reference system with � � 0.
FIG. 5. Specific heat from MCS of BA networks with N �
5600, for � � 1=3 and hqi � 10. The critical temperature in the
large-N limit is at kBTc=J � 11:33 [Eq. (6)].
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We now leave equilibrium statistical mechanics and
focus on dynamical systems. In the contact process for
disease spreading, each node can be either ill or healthy.
An ill node can cure at rate 1, and a healthy node becomes
infected at a rate which is ! times the number of ill
neighbors. The model has a phase transition between an
absorbing healthy state and an active state with a nonzero
density of ill nodes, at some !c. On a scale-free network a
finite !c is found for � > 3. The critical exponents depend
on � in the range 3< � 	 4 and assume standard mean-
field values for � > 4 [9]. Generalizing the process to a
degree-dependent infection rate, !ij � !hqi2��qiqj���,
we arrive again at (3). The exponent mapping appears to
be quite generally valid [10].

In conclusion, static and dynamic order-disorder transi-
tions on scale-free networks display singularities that de-
pend on the network topology and on the form of the
interactions. Connectivity-dependent interactions can be
used as a probe of topology-dependent cooperative behav-
ior. The exponent mapping (3) prescribes how to trade
interactions for topology.
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