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Vibrations and Diverging Length Scales Near the Unjamming Transition
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We numerically study the vibrations of jammed packings of particles interacting with finite-range,
repulsive potentials at zero temperature. As the packing fraction � is lowered towards the onset of
unjamming at �c, the density of vibrational states approaches a nonzero value in the limit of zero
frequency. For �>�c, there is a crossover frequency, !� below which the density of states drops towards
zero. This crossover frequency obeys power-law scaling with �-�c. Characteristic length scales,
determined from the dominant wave vector contributing to the eigenmode at !�, diverge as power
laws at the unjamming transition.
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The transition in which a disordered material becomes
rigid encompasses a wide range of phenomena, from the
liquid-glass transition to the onset of flow in granular
materials or colloidal dispersions. There has been increas-
ing convergence to the view that the onset of rigidity, or
jamming, in a granular material and the onset of glassiness
in a molecular liquid share many features in common [1–
3]. An understanding of the origin of these commonalities
may shed light on describing problems as diverse as force
propagation through amorphous packings [4], dynamical
heterogeneities in supercooled liquids [5], and the nature of
the low-lying energy states of glasses [6,7].

In granular materials, which are effectively at zero tem-
perature, a key parameter is the packing fraction of parti-
cles, �. At a threshold packing fraction, �c, a granular
material becomes mechanically stable—it jams. Studies of
an idealized granular packing show that the jamming-
unjamming transition has a mixed first-order–second-
order character [8,9]. As such a system unjams with de-
creasing packing fraction, the number of interacting neigh-
bors per particle drops discontinuously to zero. Despite this
characteristic signature of first-order behavior, power-law
scaling is also observed for other quantities [8]. This raises
the question of whether there is a diverging length scale
associated with the loss of rigidity. Simulations suggest
that a diverging length scale exists on the low-density side
of the transition [9,10], but there has been no demonstra-
tion of similar behavior in the jammed phase. Here we
show that a diverging length can be extracted from the
vibrational properties of the jammed phase.

In most crystalline or amorphous solids, vibrations at
low frequency, !, are expected to be long-wavelength,
acoustic plane waves. From this assumption one obtains
05=95(9)=098301(4)$23.00 09830
the asymptotic low-frequency Debye density of vibrational
states: D�!� / !D�1 where D is the dimension of space.
In this Letter, we conduct a systematic study of vibrational
properties of frictionless, granular packings for volume
fractions above the jamming transition. We find excess
low-frequency modes that extend down to a characteristic
frequency !�, below which D�!� drops towards zero. The
crossover frequency !�, vanishes as a power law as �
approaches ��

c . Thus, �c marks the disappearance of a
very unusual solid. Moreover, given !�, we can define a
corresponding length scale, �, that diverges as a power law
in �-�c. Below �, the system behaves like the marginal
solid at �c, while above � it behaves like an ordinary
elastic solid [11].

The excess low-frequency vibrations that we find in our
amorphous packings are reminiscent of phonon spectra in
glasses [7]. Simulation studies of the Lennard-Jones glass
found an excess of low-frequency vibrational modes [12]
that increased as the system was diluted in an ad hoc
fashion [13]. In another line of work, similar behavior is
observed in fractal aggregates [14,15] as the particle den-
sity is lowered towards the percolation threshold [16]. By
contrast, our system is not fractal even at the transition.
Random networks also exhibit similar features [17].
Experiments on glassy systems show that there is a peak
in D�!�=!2, known as the boson peak, that can increase in
height and shift to lower frequency as the glass transition is
approached [18]. The system we describe below allows us
to observe an enhancement in low-frequency modes as we
approach an unusual critical point.

In the simulations reported here we have studied mono-
disperse, soft spheres of diameter � interacting through a
finite-range, purely repulsive, harmonic potential:
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FIG. 1. (a) Density of vibrational states D�!�, for N � 1024
monodisperse spheres, interacting via harmonic repulsions. The
curves from right to left are for ���c � 1� 10�1, 1� 10�2,
5� 10�3, 1� 10�3, 5� 10�4, 1� 10�4, 5� 10�5, 1� 10�6,
and 1� 10�8. (b) D�!�=!2 at ���c � 1� 10�6, 1� 10�4,
1� 10�3, 1� 10�2, and 1� 10�1, using data from N � 1024,
4096, and 10 000. Error bars are represented by the scatter in the
data.
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FIG. 2. The crossover frequency !�. The line is a fit to Eq. (1)
with � � 0:48.
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FIG. 3. (a) Transverse spectral functions fT�k;!�� for ��
�c � 1� 10�5, 5� 10�5, 1� 10�4, 5� 10�4, 1� 10�3, and
5� 10�3, with decreasing amplitude, respectively. (b) The cor-
relation length �T 
 2�=k� obtained from the wave vector k� for
the position of the peak in fT at frequency !�. Data obtained
from all system sizes.
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V�r� �
�
V0�1� r=��2 r < �
0 r � �

:

Here, r is the center-to-center separation between two
particles. The units of length and time are � and
�md2=V0�

1=2, respectively, for particles of mass m. Our
three dimensional (3D) systems consist of 1024 	 N 	
10000 spheres in periodic cubic simulation cells. We em-
ploy a compression/expansion algorithm followed by
conjugate-gradient energy minimization to obtain T � 0
configurations [8]. We also studied bidisperse, harmonic
discs in 2D, as well as Hertzian contact potentials in 3D.
Our conclusions are the same for all three systems.

Figure 1(a) shows the density of states (computed from
the dynamical matrix [19]), D�!�, as a function of !
covering eight decades in ����c�, averaged over 10
configurations for N � 1024. For the smallest value of
����c�, the low-frequency behavior approaches a flat
spectrum with an intercept of D0 
 D�! ! 0�. Similar
behavior is seen in fractals [15] and random networks [17].
Thus, close to the jamming transition there is no longer any
vestige of Debye behavior. As the system is compressed
above threshold, the curves depart from this plateau be-
havior at a frequency !�, which increases with ����c�.
Below !�, D�!� ! 0 as ! ! 0. Experiments on vitreous
silica [20] and simulations of glasses with three-body
interactions [21] have observed a similar trend with de-
creasing pressure. Figure 1(b) shows D�!�=!2 for all N at
several values of ����c�. For N > 1024, data is aver-
aged over 3–5 configurations. The peak position shifts to
lower frequencies and the peak height increases as �c is
approached, analogous to the way some glasses behave as
the glass transition temperature is approached [18].

Figure 2 shows the crossover frequency !� versus ���
�c�. We determine !� by finding where D�!� for a given
����c� departs from D�!� for the next smallest value of
����c�. Over more than 4 decades in ����c�:

!� / ����c�
� (1)

with � � 0:48� 0:03. The scaling is robust, independent
09830
of the precise manner in which we determine !�. It is the
same (with different prefactors) when !� is defined as the
value of ! at which D�!� reaches D0, 0:9D0, or 0:5D0, as
well as the frequency where D�!�=!2 in Fig. 1(b) levels
off with decreasing !.

Given !�, we define a corresponding length scale, �T ,
that diverges as � ! ��

c . To extract �T , we examine the
spatial variation of the eigenmode corresponding to the
frequency !�. We take the Fourier transform of the appro-
priate component of the polarization vector Pi�!

��, of each
particle i, which for transverse waves is [22],

fT�k;!
�� �

���������
X
i

k̂^Pi�!
�� exp�ik � ri�

��������
2
�
;

where hi denotes an average over configurations and over
all wave vectors with the same magnitude k. (The longi-
tudinal component, fL�k;!�, not shown, is the dynamical
structure factor accessible from inelastic neutron scatter-
ing.) Fig. 3(a) shows these functions at the values of !�

determined for different compressions, ����c�. The
transverse components exhibit well-defined peaks at small
wave vectors k� (there is a system size cutoff at kmin �
2�=L, where L is the size of the simulation box). Thus,
�T 
 2�=k� is the dominant transverse length scale for
that mode. Figure 3(b) shows �T as a function of ����c�.
The solid line corresponds to a power-law fit:
1-2
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�T / ����c�
��T ; (2)

with �T � 0:24� 0:03. The exponents �T and � [Eq. (1)]
can be related to each other via a simple scaling argument
using k� � !�=cT���, where cT��� is the velocity of
transverse sound. The shear modulus G1 vanishes with
an exponent of � � 0:48� 0:05 [9], implying that cT���
vanishes with an exponent of 0.24. Given � � 0:48, we
would therefore expect �T � �� �=2 � 0:24, in agree-
ment with the results of Fig. 3(b).

A similar argument can be constructed for a longitudinal
length �L based on the peak of fL�k;!��. Although it is
difficult to extract the peak value from fL�k;!

�� because
the peaks occur at very low values of k, the analogous
scaling relation based on the longitudinal sound speed [and
hence the bulk modulus, which is independent of ���c
[9] ] predicts

�L � 0:48: (3)

We also simulated systems with Hertzian potentials:
V0�1� r=��5=2, for r < �, and zero otherwise. In this
case, we find that !� vanishes with an exponent � �
0:78� 0:03, which is different from that obtained for the
harmonic case. However, by calculating the peak of
fT�k;!

�� we obtain a length scale �T that diverges with
�T � 0:23, just as in the harmonic case. This is consistent
with the scaling argument based on the speed of sound,
since the shear modulus vanishes with an exponent � �
0:95 for the Hertzian case [9]. Thus, for the Hertzian and
harmonic potentials, we have the same scaling for �T ,
suggesting the transition is universal.

The strong departure from the low-frequency Debye
density of states suggests that the eigenmodes are poorly
characterized by simple plane waves [23]. We illustrate this
point in Fig. 4 where we show the lowest frequency modes
for 2D harmonic systems at the two extreme values of
����c� � 1� 10�1 and 1� 10�8. We show 2D results
here for ease of visualization. These correspond to modes
below and above !�, respectively, for those packing frac-
tions. In the compressed system at !<!� the eigenmode
FIG. 4. Lowest frequency eigenmodes for N � 1024 bidis-
perse discs in 2D, at two extreme values of ���c: 1� 10�1

(left), and 1� 10�8 (right). The dots represent the centers of the
particle and the black lines their polarization vectors.
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retains identifiable correlated plane-wave-like character,
consistent with the more Debye-like behavior of D�!� as
! ! 0. In contrast, when !>!� as in the system closest
to �c, all plane-wave character is lost. This picture sug-
gests that �T represents the length scale above which one
can average over disorder: wave vectors of magnitude k >
2�=�T do not have long enough wavelengths for effective
averaging to take place. This is related to the criterion that
characterizes the elastic-granular crossover in a Lennard-
Jones glass [24].

Our results for !� and �T have motivated three theoreti-
cal papers that treat different aspects of the zero-
temperature jamming transition. A soft-mode analysis by
Wyart et al. [11] predicts a constant density of states in the
isostatic limit [25] (achieved in our system at �c [8,9]). For
�>�c, they predict a crossover frequency !�, that van-
ishes with power laws that agree with our findings. They
also identify a diverging length scale consistent with our
prediction for �L [Eq. (3)]. The approach by Schwarz et al.
[26] relates jamming at �c to the onset of k-core percola-
tion. For the Bethe lattice, they find a correlation length
exponent of � � 1=4, in agreement with Eq. (2), as well as
another length scale with �# � 1=2, in agreement with
predictions of Wyart et al. [11] and our Eq. (3). Henkes
et al. [27] proposed a field-theory of 2D packings and
argued for two diverging length scales at the jamming
transition in agreement with Eqs. (2) and (3). Finally, a
diverging length scale was measured in simulations by
Drocco et al. [10], on approach to the jamming threshold
from below. This length scale exponent was found to be
�� � 0:6–0:7, in agreement with the finite-size scaling
analysis of jamming thresholds [8,9].

Thus, four relevant length scales emerge in describing
the jamming-unjamming transition: (i) The interparticle
overlap distance, which goes linearly to zero at �c [9].
(ii) The length scale determined from finite-size scaling
[8,9] and that obtained on the low-density side of the
transition [10]. These diverge with an exponent �0:7.
(iii) The diverging length scale presented here on the
high-density side of the transition, determined from trans-
verse vibrations; this diverges with an exponent of 0.24.
(iv) Theories [11,26] and a scaling argument based on our
data [Eq. (3)] suggest a diverging length scale with expo-
nent 0.5. It is still not clear how all these different length
scales are tied together. That different exponents are ob-
served on different sides of the transition suggests that the
jammed phase may always be separated from the un-
jammed one by a singularity.

In conclusion, we have studied the properties of the
jamming-unjamming transition at zero temperature. The
loss of rigidity is characterized by a diverging length scale,
and a discontinuity in the number of interacting neighbors
[8,9]. This suggests that unjamming may be most properly
described as a second-order transition with a universal
jump in the order parameter.
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Fractal objects can show anomalous scaling in the den-
sity of states with an excess of low-frequency modes [14–
16]. In contrast, at the transition our system is already
dense and thus more similar to that of a glass.

Our results suggest that the excess vibrations of glasses
are a pale reflection of properties at the jamming transition:
we see a density of states which can produce a boson peak
that diverges at the transition, where the vanishing of the
boson peak frequency is accompanied by a diverging
length scale. We suggest that the excess density of states
can be observed experimentally in dense colloidal suspen-
sions and emulsions by measuring the trajectory of a few
tracer particles. This would test the proposed connection
between glasses and athermal systems near the jamming
transition.
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