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Fractons in Proteins: Can They Lead to Anomalously Decaying Time Autocorrelations?
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Motivated by recent studies on the fractal nature of folded proteins, we analyze the time-dependent
autocorrelation function h ~x�t� � ~x�0�i of the distance between two points on a thermally vibrating fractal.
Using fractons, the vibrational excitations of a fractal, we show that for both strongly underdamped and
overdamped vibrations this correlation function decays anomalously, displaying a crossover from a nearly
stretched exponential decay at short times to a slow algebraic decay at long times. Relationship to single
molecule experiments is discussed.
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Recently, fluctuations of single folded proteins at equi-
librium have been studied by Xie and co-workers [1].
Electron transfer between donor and acceptor in close
proximity to each other has been used to monitor in time
the distance between the two associated groups. The auto-
correlation function for this distance has been found to
decay very slowly in time following anomalous power
laws. Furthermore, experiments by Lu and co-workers
[2], involving long range energy transfer between rela-
tively distant groups, report on long time scales under
enzymatic reaction. It has been conjectured that equilib-
rium dynamics of enzymes play a major role in their
function as catalysts [2,3].

Interestingly, by examining about 200 folded proteins, it
has been recently found [4] that they can be described as
mass fractals whose fractal dimension df is close to 2.5
(with a statistical standard deviation of about 0.2). This
suggests that the vibrational excitations on a fractal—the
so-called fractons [5–10]—can be used to describe static
and dynamic properties of proteins. The use of fractons for
proteins allows us to describe the thermally excited vibra-
tional motion in proteins on a universal level, yet, still
microscopic in essence. Consistent with this approach,
the spectral dimension ds, governing the density of vibra-
tional states on a fractal, was deduced from electron spin
relaxation measurements on proteins that were interpreted
using the Raman relaxation mechanism [11]. For a number
of modest-size proteins ds was found from this experiment
to be in range 1.3–1.7 [11]. Computational studies [12]
extended the range of possible values of ds from 1.3 in
small proteins ( � 100 amino acids) to values close to 2 for
very large proteins (over 2000–3000 amino acids). It thus
appears that the (nearly) fractal properties of folded pro-
teins are quite well established. Importantly, it has been
argued that this property leads to large thermal fluctuations
of the amino acid displacements u about their equilibrium
position. These are predicted to diverge with the protein
size via a generalized Landau-Peierls instability, hu2i �
N2=ds�1 (for ds < 2) where N is the number of amino acids
[12]. In the case of enzymes, these large fluctuations may
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assist enzymatic activity. If hu2i1=2 reaches the equilibrium
interamino acid distance, ‘‘melting’’ of the protein is ex-
pected; i.e., folding will not occur. Since evolution must
have produced only proteins that have a strong tendency to
fold, one expects a limit on their size for a given ds, or a
size dependent ds approaching the value of 2 as N in-
creases, as seen in computations [12].

In this Letter we concentrate on the equilibrium dynamic
fluctuations of folded proteins using their fractal nature.
For the sake of clarity, we review the main properties of the
fracton model. Our system is a fractal cluster of beads, all
identical, that are connected by harmonic springs. The
fractal is embedded in the three-dimensional (3D) space
and is characterized by a fractal dimension df, a manifold
fractal dimension dl, and a spectral dimension ds. The
beads in our model are defined rather ambiguously and
model small groups on the protein involving, say, one
alpha-carbon group [12] or an amino acid. The springs
have a finite mean length, thereby giving a ground config-
urational state of finite size.

The fractal dimension df describes how the ‘‘mass’’ n
(i.e., the number of beads that belong to the fractal) within
a sphere of radius r scales with r, n� rdf , and df � 3. The
manifold dimension dl describes the fractality of the spring
network in topological (or ‘‘chemical’’) space [9,10]. The
chemical distance l is the shortest path between two points
along the connecting springs. It relates to the real space
distance through l� rdmin , dmin 	 df=dl. To clarify the
meaning of dl, consider a linear bead-spring chain folded
self-similarly in the 3D space (e.g., a Gaussian or a self-
avoiding chain) without forming new springs between
neighboring beads. In this case dl 	 1 whatever the value
of df. Similarly, a 2D bead-spring (membranelike) net-
work, crumpled self-similarly in the 3D space with no new
bonds (springs) created, corresponds to dl 	 2 (indepen-
dent of df). The spectral dimension ds describes dynamic
quantities associated with the fractal, e.g., the probability
density of a random walker to return to the origin at time t,
Po�t� � t�ds=2, and the density of vibrational states,
N�!� �!ds�1. These three broken dimensions obey the
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inequalities 1 � ds � dl � df � 3. We shall assume that
for proteins dl ’ df, as neighboring groups are supposed to
strongly interact and form new ‘‘springs’’ [12]. However,
we keep dl different from df for generality.

The internal ‘‘coordinate’’ (or the ‘‘name’’) of a bead in
the manifold space is described here, even if just symboli-
cally, by the ‘‘vector’’ ~l (taken to be dimensionless). The
vector ~R�~l� denotes the position of this bead in the 3D
embedding space. The ground configurational state of the
fractal is described by the set of coordinates ~Req�~l�.
Defining the deviation from the ground state by the dis-
placements field u�~l� 	 ~R�~l� � ~Req�~l�, the Hamiltonian of
the fractal in the scalar elasticity model is

H�f ~u�~l�g� 	
1

2
m!2

o

X
h~l~l0i

� ~u�~l� � ~u�~l0��2; (1)

where h~l~l0i stands for nearest-neighbor pairs on the mani-
fold, !o is the spring self-frequency, and m is the bead
mass. The equilibrium spacing between beads (i.e., the
spring unperturbed length) will be denoted by b.

We shall make use of the set of the eigenstates 
!�~l� of
the Hamitonian Eq. (1). These are the fractons, namely, the
vibrational excitations of the fractal [5,7,10]. Fractons are
defined as the solution of the eigenvalue equation

!2
o

X
~l02~l

�
!�~l
0
� �
!�~l�� 	 �!2
!�~l�; (2)

where ~l0 2 ~l denotes neighboring beads to ~l on the mani-
fold. The left-hand side of Eq. (2) is the discrete Laplacian
operator written on the fractal. The eigenstates 
!�~l� form
an orthonormal set [7]. Thus �~l
!

��~l�
!0 �~l� 	 �!;!0 and

�!
!
��~l�
!�~l

0
� 	 �~l;~l0 . This allows us to define an eigen-

state transform ~u! 	 �~l ~u�
~l�
!

��~l� and an inverse trans-

form ~u�~l� 	 �! ~u!
!�~l�, so that ~u! is the amplitude of the
normal mode 
!�~l�. In the eigenstate ‘‘space,’’ the
Hamiltonian is thus diagonal

H�f ~u!g� 	
1

2
m
X
!

!2 ~u2!: (3)

Equipartition theorem then dictates that at thermal equi-
librium

h ~u! � ~u!0 iT 	
3kBT

m!2 �!;!0 : (4)

The eigenstates 
!�~l� are strongly localized in space,
unlike the oscillatory behavior characteristic of uniform
networks. A disorder averaged eigenstate may be defined
according to �
!�l� 	 h
!�0�
!�l�idis=h
!�0�

2idis, where
the averaging is performed over different realizations of
the fractal, or over different origins l 	 0 at a given real-
ization (note that h
!�0�

2idis 	 1=N). �
!�l� obeys the
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following scaling form [5]

�
!�l� 	 f��!=!o�
ds=dl l�; (5)

where f�y� is the scaling function. For extremely large
scaling arguments y, f�y� is exponentially decaying
[7,9,10]. More important for our analysis below is the be-
havior of the scaling function f�y� near the origin y 	 0.
We assume that f�y� is analytic at y 	 0 and has a vanish-
ing slope, thereby f�y� ’ 1� const� y2 for y� 1. This is
approximately confirmed by recent extensive simulations
on fractal clusters [10] where it appears that, for small y,
the ‘‘superlocalization’’ exponent in the manifold space is
close to 2 (see Figs. 5 and 9 in Ref. [10]).

We now turn to discuss the dynamics of the fractal
cluster vibrations. Following Eq. (1), the dynamics of the
collection of beads is described by a set of Langevin
equations (inertia being included) in which each bead is
coupled to its fractal neighbors through the connecting
springs. Friction and white noise forces are added to allow
for thermal fluctuations in the system and they obey the
fluctuation-dissipation theorem. Under the operation of the
eigenstate transform defined above, we obtain Langevin
equations for the normal mode amplitudes

m
d2 ~u!
dt2

	 �m!2 ~u! �m�
d ~u!
dt

� ~�!�t�; (6)

where m� is the friction and ~�!�t� is thermal white noise.
This is the Langevin equation for a harmonic oscillator and
the resulting autocorrelation function is well known [13].
Here, however, we shall concentrate on two limiting cases.
In the first case, we neglect the friction, which implies that
modes are entirely undamped (or strongly underdamped),
and we have pure vibrations. The strongly underdamped
limit applies to short times such that �t� 1, where
e��t=2 ’ 1, bearing in mind that this term will eventually
become important at long times. In addition, considering
the wide range of mode frequencies that appear in a large
fractal cluster,!min <!<!o, this limit requires that � &

!min � R
�df=ds
g where Rg is the gyration radius. Thus,

it is assumed that energy transfer to the solvent is neg-
ligible, a situation that may occur in a large protein
where the surface to volume ratio is small. Under this
assumption, the autocorrelation function of the modes is
purely oscillatory

h ~u!�t� � ~u!�0�i ’ h ~u2!iT cos�!t�: (7)

The second limit corresponds to strongly overdamped
modes where � * !o. This is the expected situation
when each bead experiences a solvent Stokes drag. In
this case

h ~u!�t� � ~u!�0�i ’ h ~u2!iTe�!
2t=�: (8)

This case is similar to the ‘‘Rouse model’’ for linear
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polymers [14] and fractal sol-gel clusters [15], except that
it deals with vibrations on a fractal.

Consider now the autocorrelation function of the dis-
tance ~X�t� between two beads on the fractal, or the dis-
placement difference ~x�t� autocorrelation. The latter is the
correlation function that can be deduced from energy or
electron transfer experiments [1,2]. Let ~X�t� 	
~R�~l; t� � ~R�~l0; t� and ~x�t� 	 ~u�~l; t� � ~u�~l0; t�. Then h ~X�t� �
~X�0�i 	 h ~x�t� � ~x�0�i � ~X2

eq where ~Xeq 	 ~Req�~l� � ~Req�~l
0
�.

The displacement difference autocorrelation is

h ~x�t� � ~x�0�i	h ~u�~l;t� � ~u�~l;0�i�h ~u�~l0;t� � ~u�~l0;0�i

�h ~u�~l;t� � ~u�~l0;0�i�h ~u�~l0;t� � ~u�~l;0�i: (9)

Using translational invariance, after performing disorder
averaging [see discussion following Eq. (4)],

h ~x�t� � ~x�0�i 	 2�h ~u�0; t� � ~u�0; 0�i � h ~u�~l� ~l0; t� � ~u�0; 0�i�:

(10)

As this depends only on the difference j~l� ~l0j we now set
~l0 	 0 without loss of generality. Using the normal modes
we have

h ~x�t� � ~x�0�i 	
2

N

X
!

�1� �
!�l��h ~u!�t� � ~u!�0�i: (11)

Based on the Gaussian property of f ~u!g, we note that ~x�t� is
a stochastic Gaussian variable. Therefore, higher order
correlation functions of ~x�t� are related to h ~x�t� � ~x�0�i
through Wick’s theorem.

Consider now the two limits discussed above. In the
strongly underdamped limit, we have

h ~x�t� � ~x�0�i 	
2

N

X
!

h ~u2!iT�1� �
!�l�� cos�!t�: (12)

Equation (12) is similar to a Fourier sum, although the
frequencies ! are not integer multiples of !min as in a
regular Fourier sum. It shows that if there are very few, well
separated, modes (i.e., for a small system), the autocorre-
lation function should show some oscillatory behavior.
However, if the fractal cluster (i.e., protein) is sufficiently
large, ! is nearly continuous and we transform the sum to
an integral

h ~x�t� � ~x�0�i	
2

N

Z !o

!min

d!N�!�h ~u2!iT�1� �
!�l��cos�!t�;

(13)

where N�!� is the density of states. Using Eqs. (4) and (5)
and N�!� 	 no!

ds�1, with no 	 Nds=!
ds
o chosen such

that
R!o
0 d!N�!� 	 N, leads to

h ~x�t� � ~x�0�i 	 6ds
kBT

m!ds
o

Z !o

!min

d!!ds�3�1

� f��!=!o�
ds=dl l�� cos�!t�: (14)
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Focusing on the time regime !�1
o � t� !�1

min we may set
the limits of integration to 0 and infinity. Changing the
variable of integration to z 	 !t we obtain the following
scaling form

h ~x�t� � ~x�0�i	
kBT

m!2
o
�!ot�2�dsg�l=‘�t��;

g�v�	6ds
Z 1

0
dzzds�3�1�f�zds=dlv��cos�z�; (15)

where ‘�t� 	 �!ot�
ds=dl is the length describing the propa-

gation with distance in the manifold space of the bead-bead
correlations. It also describes the response to a localized
external perturbative force, or the spreading of a wave
packet [5,16]. In real space, this propagation length is
$�t� � tds=df .

We now analyze Eq. (15) at short and long times. If
‘�t� � l, the argument of the eigenstate scaling function
f�y� is usually large (except for exceptionally small z) and,
considering the strong localization, we may use f�y� � 1.
This regime therefore corresponds to completely uncorre-
lated motion of the two beads. Thus, provided that ds < 2,
at short times we find stretched-exponential-like decay
�1� const� t2�ds , or, more precisely,

h ~x�t� � ~x�0�i � h ~x2i � C
kBT

m!2
o
�!ot�2�ds ; (16)

where C is a numerical constant, C 	 6ds �
cos�ds&=2���ds � 2�. The static variance is

h ~x2i � const�
kBT

m!2
o
�r=b�df�2�ds�=ds (17)

(provided that 2 dsdl � ds > 2, assuming f�y� ’ 1� const�

y2 for y� 1) showing the divergence with distance of the
interparticle separation fluctuations, in accord with the
Landau-Peierls effect. Note that the static variance may
be described by an effective harmonic potential 1

2m!eff ~x
2

with [7] !eff � !o�r=b�
�df�1�ds=2�=ds , consistent with the

measurements reported in Ref. [1]. Equation (16) shows
that the initial decay of h ~x�t� � ~x�0�i is due to uncorrelated
subdiffusive motion of each bead resulting from the super-
position of thermally excited fractons.

At long times such that ‘�t� � l, the correlation has
already propagated much further than the distance l (or r,
in real space), and the motion of the two particles is nearly
perfectly correlated, thus leading to a vanishing autocorre-
lation of ~x�t�. The precise decay form is very sensitive to
the behavior of the scaling function f�y� near the origin
y 	 0 [see discussion following Eq. (5)], and we find

h ~x�t� � ~x�0�i � const�
kBT

m!2
o
l2�!ot���2ds=dl�ds�2� (18)

provided that 2< 2 dsdl � ds < 3 (which is required for the
integral to converge). Thus, at long times we obtain a
slow algebraic decay �t�(, where ( can lie in the range
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0<(< 1 (depending on ds and dl). This asymptotic
behavior proceeds until times of order min���1; !�1

min�.
Next consider the strongly overdamped limit. In this

case

h ~x�t� � ~x�0�i 	 6ds
kBT

m!ds
o

�
Z !o

!min

d!!ds�3�1� f��!=!o�
ds=dl l��

� e�!
2t=�: (19)

This leads to the following propagation length ‘�t� 	
�!2

o=��ds=2Dtds=2dl . At the short time regime, ‘�t� � l, we
obtain (for ds < 2)

h ~x�t� � ~x�0�i � h ~x2i � B
kBT

m!2
o

�
!2
o

�
t
�
1�ds=2

; (20)

where B 	 6ds��ds=2�=�2� ds�. For long times, ‘�t� � l,
we get

h ~x�t� � ~x�0�i � const�
kBT

m!2
o
l2
�
!2
o

�
t
�
��ds=dl�ds=2�1�

(21)

assuming that 2 dlds < 2� dl.
To summarize the time dependencies, in the undamped

limit we find

h ~x�t� � ~x�0�i �
�
1� const� t2�ds for t� t�1;

t��2ds=dl�ds�2� for t� t�1:
; (22)

where t�1 � !�1
o �r=b�df=ds . In the strongly overdamped

limit we have

h ~x�t� � ~x�0�i �
�
1� const� t1�ds=2 for t� t�2;

t��ds=dl�ds=2�1� for t� t�2:
;

(23)

where t�2 �
�
!2
o
�r=b�2df=ds .

We now turn to discuss the experimental implications of
our results. Electron spin relaxation measurements [11]
and computer simulations [12] show that ds varies from
one protein to another covering the range 1:3 & ds & 1:9.
Since neighboring groups usually interact strongly, we can
assume dl ’ df and use the values obtained from computer
analysis of over 200 proteins [4], 2:3 & df & 2:7. We thus
estimate the short time exponents to be in the ranges 0:1 &

2� ds & 0:7 in the undamped model, and 0:05 &

1� ds=2 & 0:35 in the overdamped case. The long time
exponents are predicted to lie in the ranges 0:3 & 2 dsdl �

ds � 2< 1 in the undamped case, and 0:15 &
ds
dl
� ds=2�

1 & 0:7 in the overdamped case. We note that in the over-
damped case, for a 1D bead-spring (Rouse-like) chain
(dl 	 ds 	 1), both short and long time exponents have
the value 1=2. This behavior can be approximated by a
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Mittag-Leffler function [17], and might be related to the
experiments of Xie and co-workers [1].

In this Letter we have demonstrated that thermally
excited fractons on a fractal, which model vibrational
modes of proteins, lead naturally to a nonexponential
decay of the autocorrelation function of the distance be-
tween two tagged groups. It is gratifying that, even for pure
vibrations, we have obtained correlation functions that
decay in time, and they do so as power laws. Moreover,
in the case of pure vibrations, only fractals whose charac-
teristic dimensions obey the inequalities 2< 2 dsdl � ds < 3

and ds < 2 will show these long time algebraic decays.
These inequalities do not hold for uniform lattices in all
dimensions, as expected. Our predictions are amenable for
verification in single molecule experiments.
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