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Molecular Model of the Contractile Ring
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We present a model for the actin contractile ring of adherent animal cells. The model suggests that the
actin concentration within the ring and consequently the power that the ring exerts both increase during
contraction. We demonstrate the crucial role of actin polymerization and depolymerization throughout
cytokinesis, and the dominance of viscous dissipation in the dynamics. The physical origin of two phases
in cytokinesis dynamics (‘‘biphasic cytokinesis’’) follows from a limitation on the actin density. The
model is consistent with a wide range of measurements of the midzone of dividing animal cells.
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FIG. 1. Modeling the contraction of a dividing D. discoideum
cell. Left: Microscope image of a dividing D. Discoideum.
Right: We approximate the contractile ring by an oval tube of
thickness �, length ‘, width w, and height h. The typical length
of the cell at this stage is 20–50 �m. Dashed thick lines
represent a few actin filaments at the ring center. Thick arrows
depict the flow of the cytoplasm out of the tube.
Most animal cells divide by forming a furrow at midcell,
directed perpendicular to its long axis, which deepens until
the two daughter cells physically separate. This process is
termed ‘‘cytokinesis.’’ Furrow kinetics measured on many
different cells reveal an initial universal linear phase, in
which the furrow deepens at a constant rate until the
midzone reaches approximately 10% of the initial cell
diameter [1]. Then the contraction enters a second, non-
linear, phase in which different mechanisms either take
over or assist to complete the separation [2,3].

The hypothesis of an actin ring that actively generates
contractile forces during cytokinesis was proposed by
Marsland and Landau in 1954 [4] and was later directly
observed. It was shown that the sliding of actin filaments
(F-actin) driven by filaments of myosin II motors produces
the forces that contract the ring [5–10]. The widely ac-
cepted model of the structure of the ring consists of a
contracting network of actin filaments. This network per-
forms a net ‘‘purse string’’ action as the filaments that
compose it reorganize by polymerization and disassembly
[1,5,8,11]. At the final stage of the contraction, the ring
disintegrates [2,9]. However, a detailed elaboration of the
molecular mechanism underlying the contraction has yet to
be developed.

Measurements on various adherent cells show that the
structure of the contractile ring is rather universal [9], and
we therefore refer to a ‘‘typical’’ actin ring. This model
ring has an initial width (the cell diameter) of w �
10–40 �m, which contracts at a constant rate of _w �
0:1–0:5 �m= sec (see Fig. 1). Its length is ‘ � 5–10 �m
and its thickness is � � 0:1–0:2 �m, both remaining ap-
proximately constant during the linear contraction phase
[1,5–7,9,10,12–14]. We further assume the height of the
cell does not change significantly during this time as is
indicated experimentally (h � 3–5 �m), but this assump-
tion can be relaxed.

A typical ring contains about 105 actin filaments (of
diameter a� 6–8 nm and length 0:2–0:6 �m) and about
104 myosin bipolar filaments of diameter b� 10–20 nm
and length 0:5–1 �m [9,13–15]. The total volume of actin
05=95(9)=098102(4)$23.00 09810
filaments is therefore about 5% of the initial ring volume,
which is comparable to the volume of the ring just before
disintegration.

First we consider the physical processes that oppose the
contracting ring, and from these estimate the power that the
actin network exerts and its scaling with time. The relevant
processes are adhesion of the cell to the substrate, elastic
deformation of the membrane and cytoskeleton, and the vis-
cous damping of the flow that exits the contracting furrow.

When a dividing cell adheres tightly to a substrate, the
geometry of the neck joining the two daughter cells may be
approximated as an oval tube. ‘ is the length of the tube
along the symmetry axis. The cross section of the tube has
a height h (perpendicular to the substrate), has a width w,
and is stadiumlike, i.e., a straight section capped by semi-
circles of radius h=2 at its two ends (Fig. 1). The width
contracts at a constant speed _w while h and ‘ remain fixed.
The tube walls are lined by a contracting acto-myosin ring
of thickness �.

In this geometry, the power against adhesion scales as
the substrate area exposure rate PA ’ ‘ _w where  is the
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adhesion energy per unit area. The membrane bending
elasticity is neglected due to its small bending modulus.

The elastic deformation energy of the actin ring itself is
determined by the strain in it and scales as EE � E�‘w���2

[16] where E is Young’s modulus of the actin gel and ‘w�
is the volume of the ring. The strain scales as �� _w�=w
where � is the time it takes the actin-myosin gel to reor-
ganize and thus release the accumulating stress [17]. The
power exerted against the actin elastic forces therefore
scales as PE ’ EE=�. The strain is limited by � � 1 [17],
which implies a response time � � 10 sec—a reasonable
limit for actin contraction and reorganization.

To estimate the viscous dissipation, we need the flow
velocity of the cytoplasm, which we get by comparing
the outflux at the furrow ends to the change in its vol-
ume ‘ _wh� hwv (Fig. 1). The outflux velocity v scales as
v� �‘=w� _w and its gradient as rv� �‘=w�� _w=h�. The
viscous dissipation is therefore PV � �

R
�rv�2dV �

�‘hw�‘=h�2� _w=w�2 with � the cytoplasm viscosity [18].
We evaluate the relative importance of these processes

by inserting the experimentally measured values of the
physical moduli,  ’ 10 Pa 	�m [19], E ’ 100 Pa
[20,21], and � � 104 Pa 	 s [22–28]. We get PV=PA ’
��‘=��‘=h�� _w=w� ’ 102 and PA=PE ’ �=E���
1 � 1.
We conclude that PV � PA � PE; i.e., the relevant op-
posing force is due to viscosity. Moreover, the power
supplied by the contracting ring scales like the viscous
dissipation, which diverges as the inverse width of the
furrow PV � w
1.

We simulate the contraction of the ring using the con-
traction of a grid in the form of a torus (see inset of Fig. 2),
which adjusts dynamically as actin filaments move on it
[18]. The major circumference of the torus represents the
circumference of the contracting furrow of the cell. This
FIG. 2. Results from the simulation of the actin contractile
ring. The dashed line represents the normalized furrow width,
w�t�=w�0�. The solid line represents the normalized power
P�t�=Pmax, which typically increases sixfold to tenfold. Inset: a
schematic picture (not to scale) of the simulated ring. A few
major circles are represented by the solid lines and their hex-
agonal lattice arrangement is shown on the cross section. Actin
filaments, depicted as elongated ovals, can move only along the
circles.
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circumference is much larger than that of the cross section
of the torus, which represents the fixed thickness of the
contractile ring. In practice we implement this on a doubly
periodic lattice. We define large circles as trajectories in
the torus that are parallel to its major circumference. They
are arranged in a lattice in the cross-section plane, with
either 4 or 6 nearest neighbors (for a rectangular or a
hexagonal lattice, respectively). All of the large circles
are assigned the same radius and the same number of
mesh points.

Actin filaments move only along large circles and are k
mesh points long in that direction. Actin filaments are
defined as neighbors if they are on neighboring circles
and their centers are closer than a prescribed distance.
Only neighboring filaments can interact. In reality myosin
bundles are needed for this interaction, but they are not
simulated explicitly. Myosin is assumed to be abundant so
that it is available to mediate the interaction between any
two neighboring filaments. Myosin bundles therefore af-
fect the dynamics only through their length, which we take
to be fixed and equal to 2k. Once the centers of two actin
filaments come within a distance of l � 3k (i.e., their
length plus that of the mediating myosin bundle) an attrac-
tive force begins to pull them together. This implicitly
assumes that the neighboring filaments are antiparallel,
an assumption that can be relaxed.

Actin filaments have two alternative modes of move-
ment, depending on whether or not they have a neighbor.
At each step, actin filaments that do not have neighbors
move one mesh point either left or right with equal proba-
bility. Filaments that do have neighbors can perform a
contraction step by moving one mesh point towards their
neighbor. The filament makes a contraction step with
probability p or moves away from its neighbor with proba-
bility q � 1
 p � p. As the two filaments approach each
other, p increases inversely with their distance. This sim-
ulates the increase in the strength of the bond between two
actual filaments as the overlap with the myosin bundle
increases. Once two filaments reach l � k they stop attract-
ing each other. A sweep consists of a number of indepen-
dent steps that is equal to the total number of filaments.

When actin filaments attract, they generate freed space
on the lattice. Once a slice (one mesh point thick) in the
cross-section plane of the torus contains no actin filaments,
it can be deleted. The actual number of slice deletions is
limited at every sweep by the average number of contrac-
tion steps per circle that occurred in that sweep. As a result
of each deletion the major circumference of the torus is
shortened by one mesh point. In reality the ring is con-
nected to the cell membrane by integrins, and excess
membrane and cytoplasm flow out of the contracting re-
gion. Deleting actin free slices from our lattice models the
effects of this flow.

We use two measurements (Fig. 2) to verify that the
dynamics of our model are, indeed, consistent with the
scaling we derived above and with the observed behavior
of contracting cells. The circumference of the ring, repre-
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FIG. 3. Decreasing curves: C�t�=C�0� versus )� I(*&t (* �
1:1) for the eight combinations of �� � 2 or 9, I2 � 10
3 or
5� 10
5, and �(;&� � �0:01; 1� or �1; 0:01�. The deviation from
a linear behavior starts sooner for �� � 2. Nonlinear contraction
was obtained for ( � & � 1 (data not shown). Increasing
curves: P�t�=Pmax versus ) for the same parameter values. The
lower (higher) family of curves is produced by �� � 9 (2).
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sented by the number of mesh points on the large circles,
decreases linearly in time for the majority of the process
(until about 80%–90% of the contraction is completed).
This is consistent with measurements of the first part of
cytokinesis.

The second measurement is of the power exerted by the
motors, which is calculated as the sum over all neighboring
filaments of the power per contraction step. The physical
origin of this power is the action of the myosin motor
heads, which pull the actin filaments together. Since each
myosin bundle contains many individual motor heads, the
number of motors that are actually interacting with an actin
filament is proportional to the overlap between the filament
and the myosin bundle. The power per contraction step
therefore increases in inverse proportion to the distance
between the centers of the two contracting filaments.

We next construct a continuous 1d phenomenological
model for the dynamics of F-actin in the ring. A previous
comparable model [29] thoroughly describes the spatial
organization of the ring. We expand on these ideas to treat
contraction explicitly.

Let ��x; t� be the concentration of actin filaments at time
t and position x along a 1d axis, and let C�t� �
��
 2�h 2w�t� be the circumference of the ring. The
dimensionless normalized number of filaments, whose
dynamics we analyze, is n�x; t� � ��x; t�C�t�. This total
number of actin filaments is conserved.

Treadmilling of randomly oriented filaments provides
both fluctuations and a nonthermal diffusive mechanism
[30]. The fluctuations cannot be neglected a priori due to
the small size of the system. They are accounted for by an
effective noise term,  �x; t�, whose characteristics remain
to be determined. The diffusion is modeled with a diffusion
coefficient, D.

The increase of the attraction between filaments as their
overlap grows can be modeled by a subdiffusive term in a
diffusionlike equation. Without fluctuations this reads

@tn � @x�D@xn
 P0���=�0�@x�n
"�� (1)

where P0 measures the tendency of aggregation to amplify.
This is reminiscent of a ‘‘pinching’’ process with P0 the
pinching coefficient. The exponent was chosen for sim-
plicity to be " � 1=2, i.e., ‘‘ballistic pinching.’’

�� ��� is a cutoff function whose support is ��
 � �� �
�� (where 0:1< ��
 < �� < 10 are parameters). It van-
ishes elsewhere, and connects smoothly between the differ-
ent regions. It effectively suppresses attraction for filament
concentrations that are either too low (filaments are too far
apart) or too high (due to excluded volume considerations).

We identify the subdiffusive term with a flux of F-actin
whose local velocity is u�x; t� � "P0���=�0�n

"
2@xn.
Scaling x with C�0�, scaling time with C2�0�=D, and
introducing the noise  �x; t�, we obtain

@tn � @x�@xn
 nu�   �x; t�; (2)

where n�x; t � 0� is normalized to unity. Note that if D �
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0 then small perturbations in the F-actin profile will
quickly coarsen and the dynamics will come to a halt.
For  �x; t� we take a Gaussian delta-correlated time depen-
dence with amplitude I, assuming that the dynamics of the
noise has the fastest relevant time scale [18].

The contraction of the ring is obtained by integrating
over all pairs of attracting filaments: @tC � 
&

R
ju�jdx.

& is a dimensionless contraction rate, and the modulus
arises from the fact that motion in both the left and the
right directions contributes to contraction.

We also compute the power exerted by the ring as a
product of the force driving the actin filaments (F) and
their velocity (u). Since the average overlap between actin
and myosin is linear with the concentration of F-actin, we
obtain F� ��=�0�f, with f�u� the time averaged force per
myosin cross bridge. This force-velocity relation can be
derived, e.g., from the power-stroke model [30]. We thus
obtain P �

R
�f�u�u�=�0��dx.

We solve Eq. (2) numerically in the linearly stable
configuration (( � "P0=D< 1) since otherwise the sys-
tem is unstable to short wavelength perturbations. Without
fluctuations (I � 0) the dynamics enters a nonphysical
steady state in which � is constant before substantial con-
traction takes place, implying that the intensity of the noise
must be strictly positive. In particular, when fluctuations
vanish (I ! 0), so does contraction. The general features
of the observables C�t� and P�t� depend strongly on �� but
not on ��
 (which was set to 1).

Figure 3 shows the dynamics of the normalized ring
circumference, C�t�=C�0�, and the normalized power it
exerts, P�t�=Pmax. These results reproduce the basic ex-
perimental phenomena and the results obtained in our
discrete simulation. The data scale with the variable )�
I(*&t (* � 1:1), so that I and D (in addition to & and P0)
determine the velocity of the contraction.
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When ���=�0� ’ 1, then hui is approximately constant.
In this regime C�t� decreases linearly and P�

R
�2dx�

C
1 � w
1 increases. As ���=�0� ! 0, contraction de-
cays towards a complete halt. If the excluded volume
restriction starts at low concentrations (e.g., �� � 2)
then hui decreases, the contraction rate becomes sub-
linear relatively early [at C�t�=C�0� ’ 0:25] and the power
starts decreasing. If the excluded volume restriction is
‘‘rigid’’ (e.g., �� � 9), then the linear contraction persists
further until hui and the power vanish abruptly [at
C�t�=C�0� ’ 0:1].

An interesting conclusion from our model is that rapid
motion of filaments in random directions throughout cyto-
kinesis is crucial for contraction. Without it, filaments will
coarsen, forming separate dense bundles that are too far
apart to interact and promote further contraction. It is
important to note that thermal diffusion of F-actin is sup-
pressed by cross-linkers (e.g., see [20]) and does not have a
noticeable effect. However, the motion caused by treadmil-
ling can produce velocities up to the order of micrometers
per second [30], which is sufficient to drive the dynamics.
The necessity of treadmilling for cytokinesis was demon-
strated experimentally in fission yeast [31], and is consis-
tent with several earlier experiments [32–35].

Experiments in the literature [1,12] indicate that the
concentration of F-actin in the contractile ring indeed
increases in the linear phase of cytokinesis, as we suggest.
In addition, a recent atomic force microscopy measure-
ment [36] showed that the Young modulus of the equatorial
region of a dividing fibroblast monotonically increases by
nearly an order of magnitude at this stage (consistent with
the accumulation of F-actin in our model).

Several clear predictions of our model can be tested
experimentally. Measuring the dynamics of actin concen-
tration in the ring during cytokinesis should be repeated
with different cells and better probes. Hopefully, one can
also check whether dense actin patches form at the final
stages of the linear contraction phase. The dominance of
viscous dissipation implies a dependency of the dynamics
on the effective viscosity of the cytoplasm. Forces (and
hence power) can be measured directly during cytokinesis.
The effect of additional mutations that suppress or enhance
actin polymerization and depolymerization rates on the
dynamics of the ring is highly interesting. Finally, measur-
ing the degree of reorganization (e.g., by myosin motors)
of actin filaments in the ring during contraction is both
experimentally feasible and has implications on the power
generation of this protein machinery.
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