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Carbon Nanotube Ballistic Thermal Conductance and Its Limits
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Calculations of the quantum-mechanical ballistic thermal conductance of single-walled carbon nano-
tubes, graphene, and graphite are presented, which explain previous experimental results, and directly
disprove earlier theoretical calculations. The ballistic thermal conductances are smaller than had been
previously thought, whereas the maximum sample lengths in which phonon transport remains ballistic are
orders of magnitude larger than previously suggested. Good agreement with previous experiments is
obtained, which shows that measured lower bounds to the thermal conductance of multiwalled carbon
nanotubes are very close to the upper theoretical bounds for graphite. The bounds shown here draw a line
between what is physical and unphysical in any measurements or calculations of carbon nanotube thermal
conductance, and constitute a necessary test to their validity.
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Thermal conduction through carbon nanotubes is an
important issue that has recently attracted considerable
attention [1–15]. The thermal conductivity of infinitely
long nanotubes has been theoretically studied, yielding
high values comparable to or higher than those of graphite
[5–7]. However, there are two questions that have not yet
been given a satisfactory answer for carbon nanotubes:
How high is the ballistic lattice thermal conductance?
For how long a sample does phonon transport remain
ballistic? The importance of these questions is manifest:
the high thermal conductivity values predicted for infi-
nitely long systems might be the result of either a very
high ballistic thermal conductance �b combined with
rather short ballistic lengths [16], or it might result from
a not so high �b, but a transport that remains ballistic for
very long sample lengths. These two possibilities result in
radically different implications regarding the practical use
of carbon nanotubes for thermal conduction. Despite this,
no previous satisfactory study of carbon nanotube ballistic
thermal conductance and ballistic lengths exists [17]. The
possibility of short ballistic lengths and very high ballistic
thermal conductance was implicitly stated in Refs. [8,9]. In
this Letter we show that the actual case is precisely the
opposite, with very long ballistic lengths and much smaller
thermal conductances. Refs. [8–10] violate the ballistic
upper bounds to thermal conductance, presumably due to
the inadequacy of classical molecular dynamics to address
quantum ballistic transport. Other papers have also vio-
lated the ballistic upper bounds [11,12]. The only available
experimental results on individually suspended carbon
nanotubes, for a multiwalled nanotube (MWNT) [2], sup-
port our findings. As we will see, the experimental con-
ductance is below, but very close to, the theoretical ballistic
conductance for graphite, being closely proportional to it in
the whole 0–200 K temperature range.

The standard expression for the ballistic lattice thermal
conductance is [18,19]
05=95(9)=096105(4)$23.00 09610
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where f�!; T� is the occupation distribution function for
the heat carriers at the reservoirs, and the transmission
function T �!� is defined as the number of phonon
branches at frequency ! in this particular case. The ther-
mal conductivity of a finite sample is related to its con-
ductance by � � �L=S��, where L is the length of the
suspended segment of the nanotube, and S is its cross
section. Since the cross section is not a well-defined quan-
tity in carbon nanotubes, we will discuss results in terms of
conductance. Only for convenience, we use a cross sec-
tional conductance �=s where we define a quantity s �
2�R� ’ R� 2:105 nm. R is the nanotube radius and � �

3:35 �A is arbitrarily chosen as the layer separation in
graphite. Since R is a well-defined quantity, there is no
ambiguity in doing this.

The ballistic transmission functions are calculated di-
rectly from the phonon dispersion curves. Very accurate
descriptions of the phonon dispersions for graphite and
graphene are, respectively, given using the 20 parameter
set of Ref. [20] and the 12 parameter set of Refs. [21,22].
For consistency, the phonon dispersions of single-walled
nanotubes (SWNTs) are calculated using the method of
Refs. [22,23], which properly converge to the graphene
limit for the large diameter nanotubes. This potential yields
linear dispersions for the two lowest lying ‘‘flexural’’
modes, while it has been shown that those modes should
have quadratic dispersions near the 
 point [24]. Never-
theless, from Eq. (1) and the definition of T , it is apparent
that, to construct the transmission function, it does not
matter whether the dispersions are linear or quadratic,
but only that the branch’s upper and lower frequency limits
should be accurately computed. We repeated all the calcu-
lations using the potential of Ref. [24] instead, and ob-
tained very similar results to the ones presented here. The
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high temperature limit of the cross sectional thermal con-
ductance curves obtained in that case is about 10% lower
than the one shown here. The ballistic thermal conductance
results shown in Fig. 1 are believed to be more accurate
than the ones obtained using Ref. [24]’s method for the
dispersions, because the latter does not correctly reproduce
the graphene phonon dispersions. We have estimated that
any possible inaccuracy in the phonon dispersions we used
would result in differences of only 10% or less in the
computed ballistic thermal conductance.

In Fig. 1 we show the ballistic thermal conductance,
scaled by s�R� defined above, as a function of temperature.
At low T, all nanotubes have the expected linear T depen-
dence of the conductance, with a prefactor 4�2k2B=3h,
corresponding to four quanta of thermal conductance
[19,25]. At higher temperatures, a T2 dependence is
achieved, as a result of higher phonon branches being
active. As T increases, the curves converge to a single
line, which finally saturates to a limiting high temperature
value. Results for armchair tubes, not shown here, are
virtually indistinguishable from the ones for zigzag tubes,
when the same diameters are compared. The limiting case
of a graphene sheet, given by the thick solid line, provides a
lower bound for all the nanotube curves and converges with
them in the high temperature limit. Unlike the nanotubes,
graphene has a T1:5 dependence at low T. This anomalous
behavior also differs from the T2 behavior expected for
two-dimensional acoustic phonon gases. The reason is that
one of the three acoustic branches in graphene has a
quadratic rather than linear dependence with frequency.
For this quadratic branch the frequency depends on the
wave vector as ! � �q2. For a graphene stripe of width
D! 1, the contribution of this branch to the transmission
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FIG. 1. Scaled maximum lattice thermal conductance (see
text) for SWNTs, graphene, and graphite. Experimental results
for MWNTs are proportional to the graphite curve, and only
0.4 times smaller.

09610
function at low frequency is T �!� ’
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!=�

p
. Similarly, the two linear branches contribute

an amount �D=���!=ca�b��, where ca�b� are the speeds of
sound of the two linear acoustic branches. For !! 0 their
contribution is negligible compared to that of the quadratic
branch. Therefore, the upper bound to the thermal con-
ductance of graphene at low temperature goes as

�b=s � ��1=��k5=2B T3=2=�2�2
@
3=2�1=2�; (2)

with � 	
R
1
0 x

5=2ex=�ex � 1�2dx ’ 4:46. Substituting
the value � � 0:62� 10�6 m2=s, obtained from the
theoretical dispersion, and also by other calculations
[26], and using � � 3:35 �A, we have �b=s � 0:6�
106T3=2 W=�m2 K5=2�.

The thick dashed line in Fig. 1 shows the upper bound to
the thermal conductance calculated for three-dimensional
graphite, in the basal plane, along the (110) direction.
Accurate graphite dispersion relations were calculated fol-
lowing Ref. [20]. At high T, the curve for graphite goes
above the graphene and SWNT curves by about 20%. To
understand this, we note that the high temperature limit of
�b is limT!1�b�T� � �kB=2��

R
1
0 T �!�d!, i.e., it is pro-

portional to the area under the transmission curve. The
frequency ranges of the phonon branches in graphite are
generally larger than in graphene, due to the interlayer
interaction. This results in a larger transmission function
(at equal cross sections) for graphite, and a somewhat
larger high temperature upper bound. At low temperature,
the ballistic thermal conductance of graphite has a T2:5

dependence. This limit can be obtained analytically, as for
the graphene sheet. Now, there is some dispersion in the
direction perpendicular to the planes, and the resulting
transmission function in the low frequency limit is
T !!0 � DW=��2 ����

�
p

c��2=3�!3=2 � 2, where DW is the
sample’s cross sectional area, and c is the lowest speed of
sound in the direction perpendicular to the planes. The
factor of 2 arises from the double degeneracy of this
branch. Repeating the argument of the previous paragraph,
one obtains the T5=2 dependence.

The electronic contribution to the thermal conductance
is negligible in the whole temperature range for the semi-
conducting nanotubes. For the metallic nanotubes, (6,0)
and (18,0), the electronic contribution to the ballistic ther-
mal conductance is 4 thermal conductance quanta, 4�
T9:465� 10�13 WK�2 throughout the whole temperature
range, T � 0–1000 K. The contribution of electronic sub-
bands not crossing the Fermi level is negligible, because
their separation from the Fermi level is of the order of eV’s.
For comparison, energy differences between phonon
branches are typically <0:01 eV, and so the higher phonon
subbranches play an important role in the temperature
behavior of the lattice thermal conductance.

The ballistic thermal conductances shown in Fig. 1 im-
pose a stringent limit on theoretical and experimental
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TABLE I. Ballistic lengths calculated for a (10,0) SWNT at
different temperatures. The ballistic length, L��, is defined as
the nanotube length beyond which � decreases with length faster
than L��.

T � 31:6 K 100 K 316 K 1000 K

L�0:1 35:5 �m 0:32 �m 16.2 nm 2.0 nm
L�0:2 149 �m 1:34 �m 52.9 nm 6.6 nm
L�0:3 305 �m 9:70 �m 140 nm 17.5 nm
L�0:4 511 �m 28:9 �m 428 nm 45.3 nm
L�0:5 798 �m 53:8 �m 2:31 �m 124 nm
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results: one cannot expect to measure or compute lattice
thermal conductance values higher than those shown. In
particular, at 300 K the lattice thermal conductance is, for
all nanotubes, smaller than �8�R=m� W=K (m indicating
meters). This means that all the results in Refs. [8,9] for
nanotubes shorter than 103 �A violate the quantum upper
bounds. We attribute this to the fact that those are results
from a classical molecular dynamics simulation, in which
the quantum limits play no role. Another paper, Ref. [12]
also considers finite length nanotubes, through the inclu-
sion of a boundary scattering term. Although the length of
those nanotubes is not explicitly mentioned, the 50 ps
boundary relaxation time employed there, combined with
the maximum speed of sound in nanotubes of 2�
104 m=s, implies that the maximum length of these nano-
tubes is �1 �m. From Fig. 1, the maximum possible
thermal conductivity of a 1 �m long single-walled nano-
tube at T � 100 K is in all cases less than �103 W=mK,
which means that at this temperature the results of
Ref. [12] violate the quantum upper bound by about 1 order
of magnitude.

The upper bounds shown in Fig. 1 can be attained only if
phonons travel ballistically, in which case the thermal
conductance does not depend on the length of the sample,
L. However, beyond a critical length, which depends on
temperature, scattering of phonons due to the anharmonic-
ity of the interatomic potential begins to decrease the
conductance, and the transport is no longer ballistic. We
have evaluated these ballistic lengths by iterative solution
[27] of the Boltzmann-Peierls transport equation for finite
length nanotubes [28]. Imposing black body boundary
conditions at the nanotube edges, after some algebra, an
approximation for the transport equation is obtained [28],

vp@!p=�kBT
2 ’ gp2jvpj=L� @cnp=�n�n� 1�; (3)

where g�x� 	 �np � n�=�n�n� 1�, with np the distribu-
tion function at the middle of the nanotube, @cnp is the
collision integral, n 	 �e@!=kBT � 1��1 being the Bose dis-
tribution, and p � fq; �g denotes the phonon’s wave vector
q, and branch index�. In terms of the distribution function,
the thermal conductance is

� � L
X
�

Z
vp@!pgpnp�np � 1�dq: (4)

Equations (3) and (4) in the L! 0 limit recover the
ballistic result, Eq. (1), whereas the L! 1 limit recovers
the usual Boltzmann-Peierls equation for infinitely ex-
tended systems. In this ballistic length calculation we use
the phonon dispersions of Ref. [24], since in this case it is
essential that the quadratic character of the flexural modes
be reproduced [28]. To compute the collision integral,
except for the four acoustic branches, we use a relaxation
time approximation with the parameters given in Ref. [29].
The four acoustic branches give an important contribution
and require a special treatment [28]. For these branches we
have explicitly included the three-phonon processes to first
09610
and second order in the calculation, with full observance of
the particular selection rules acting between the different
phonon branches of zigzag nanotubes [28]. Because of
approximations in the treatment of the second order pro-
cesses, the calculations for very long nanotubes, away from
the ballistic regime, are expected to be accurate in their
order of magnitude, but not in their actual value.

We define the ballistic length L�� as the length above
which ��L� decreases faster than L��, where �> 0.
Table I shows results for the ballistic lengths at different
temperatures, for a (10,0) nanotube. As we see, transport
below room temperature remains ballistic up to very large
lengths, and it is still far from diffusive even at �m long
samples. This would permit measurement of the upper
bounds experimentally at these temperatures. For higher
temperatures, shorter samples are needed if ballistic trans-
port is to be achieved. The present results strongly contrast
with those in Ref. [8], where �� L�0:68 was obtained for
as short as L> 10 nm at room temperature.

The only available experimental results on individually
suspended carbon nanotubes are for a multiwalled nano-
tube [2] (shown in Fig. 1 by the open circles). The experi-
mental results are properly located below the quantum
ballistic limits for single-walled nanotubes, graphene,
and graphite, and interestingly, they are only about one
half the graphite ballistic result and closely proportional to
it over a wide range of temperatures. This suggests that the
thermal conductance of MWNTs, while being far lower
than that for SWNTs and graphene at low temperatures, is
very similar to that of bulk graphite. For better comparison
with the MWNT experiment, the graphite ballistic curve is
also shown rescaled by 0.4. If, in addition, a parametrized
umklapp relaxation length is included in the calculation
with the commonly used form A!2T2e��=T , the higher
temperature part of the experimental points can be fit as
well (dashed line).

The reduction of the MWNT results compared to graph-
ite may indicate that phonon flow from the contact into the
inner layers of the nanotube is limited, resulting in the
outer layers carrying more heat than the inner ones, as was
suggested in Ref. [2]. Another possibility is the presence of
a slight diffusive boundary scattering at the surface of the
nanotube. In the former case, a longer contact length might
increase the conductance, which would not depend on the
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suspended length. In the latter case, a shorter suspended
length would increase the conductance, which would not
depend on the contact length. Thus, new experiments
might be able to determine the origin of the reduced
conductance. We have estimated the difference between
the two aforementioned possibilities by solution of Eqs. (3)
and (4) for a 1:5 �m (10,0) nanotube with and without an
extra boundary scattering term mimicking the experimen-
tal case. For the first possibility (contact limited flow), at
400 K, we obtain a conductance reduction with respect to
the ballistic limit of �=�b ’ 0:2, whereas for the second
possibility (boundary scattering), we obtain �=�b ’ 0:3.
The experimental MWNT reduction with respect to the
theoretical ballistic conductance of graphite at this tem-
perature is about 0.4. Although one cannot strictly compare
MWNT measurements with estimates for a SWNT, this
suggests that the boundary scattering possibility is a more
likely case. As we see in Fig. 1, these experimental results
support our finding that anharmonic effects remain weak
for considerably long samples even at moderately high
temperatures. We can conclude that MWNTs and graphite
are very similar in their thermal conduction properties
below 200 K. Above 300 K, the thermal conductivity of
the MWNT is about 50% higher than that of pyrolytic
graphite [30]. Since the high temperature conductivity
does not depend on the sample size, this suggests that
umklapp scattering in MWNTs is weaker than in graphite.

In conclusion, by computing upper bounds to the lattice
thermal conductance of SWNTs, graphene, and graphite,
we have shown that thermal transport through finite carbon
nanotubes is profoundly different from what had previ-
ously been suggested: (1) SWNT thermal conductance is
necessarily lower than previously claimed, (2) the sample
lengths in which phonon transport remains ballistic are
considerably longer than previously suggested, (3) these
findings are supported by experimental evidence; pub-
lished experimental measurements on a suspended MWNT
are close to the ballistic thermal conductance for graphite,
and suggest there is little difference between these two
systems below 200 K. In concrete practical terms, an
important message of this Letter is—some previously
predicted high values of SWNT thermal conductivity, for
example �100 K * 104 [5], may not be achieved unless the
nanotube length exceeds tens of micrometers. This may
impose serious restrictions when trying to take advantage
of nanotube thermal conduction properties for practical
applications.
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