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Suppression of Capillary Wave Broadening of Interfaces in Binary Alloys
due to Elastic Interactions
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By Monte Carlo simulations in the constant-temperature–constant-pressure ensemble a planar interface
between unmixed A-rich and B-rich phases of a binary (A, B) alloy on a compressible diamond lattice is
studied. No significant capillary wave broadening of the concentration profile across the interface is
observed, unlike lattice models of incompressible mixtures and fluids. The distortion of the lattice
structure across the interface is studied.
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Interfaces between coexisting phases are ubiquitous in
condensed matter. Nevertheless, a fundamental issue that is
not fully understood [1–10] is the precise relation between
the so-called ‘‘intrinsic interfacial profile’’ and the broad-
ening caused by lateral fluctuations of the local interface
position. Theories for interfacial profiles go back to
van der Waals [11], Cahn and Hilliard [12], and others,
and neglect these latter fluctuations, yielding the ‘‘intrinsic
profile’’ only. This remains true for more sophisticated
extensions of mean-field-type theories such as density
functional theories of fluids [5] or self-consistent field
theory of polymer blends [13].

Lateral interface fluctuations on large length scales are
modeled as ‘‘capillary waves’’ [14–16]. For a free inter-
face in three dimensions, these fluctuations lead to a di-
vergent interfacial width. This divergence is cut off at large
length scales either by the lateral size, L, of the system or
by a correlation length, �k, which may stem from a poten-
tial acting on the interface (e.g., due to gravity or interac-
tion with substrates [4,17–19]). Normally, �k is a function
of film thickness D and, hence, a dependence on either L
[4,10,20,21] or D [4,17–19] is seen in experiments
[10,17,19] or simulations [4,18,21]. While these results
agree with predictions based on capillary wave theory,
they do not allow a meaningful estimation of the ‘‘intrin-
sic’’ interfacial width,w0, because the total apparent width,
w, contains both contributions from the intrinsic profile as
well as capillary wave broadening. Approximating the
apparent profile by a convolution of the intrinsic profile
with capillary waves, one obtains

w2 � w2
0 � kBT=�4
� ln�L=B0�; (1)


 being the (long wavelength limit of the) interfacial stiff-
ness [2,3] and B0 a cutoff at short wavelengths. For fluid
interfaces in three dimensions the value of 
 agrees with
the interface tension (i.e., the excess free energy of the
interface per unit area), while in general 
 refers to the free
energy penalty for deforming the interface. Note that
Eq. (1) only holds for L� B0 because at short wave-
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lengths also the wavelength dependence of the interfacial
stiffness [5–7,9,22,23] matters. None of the quoted experi-
ments and simulations were able to clearly identify w0,
since data of w2 as a function of L only yield w2

0 �
kBT�lnB0�=4
, but not w0 and B0 separately [24].

Despite the apparent universality of this problem, sys-
tems exist for which the lateral interfacial fluctuations are
suppressed by long-range interactions. In the present work,
we demonstrate this effect by model calculations for a
binary alloy �A;B� on a compressible lattice with long-
range elastic correlations. While it has been common
knowledge that elasticity plays a crucial role in phenomena
like alloy formation [25] or surface reconstruction [26], its
effect on interface fluctuations has so far not been noticed
[27]. For a coherent binary alloy no capillary waves occur,
and the intrinsic profile is readily observed. Since for solids
strictly rigid lattices are anyway an idealization and for
most phase transitions there will be some coupling between
the order parameter and elastic degrees of freedom we
expect in solids well-defined intrinsic interfacial profiles,
unlike fluid interfaces.

Our model has been previously studied in the bulk [28]
to describe the phase diagram of solid Si-Ge mixtures.
Despite the difference in lattice parameters between these
two elements, which both crystallize in the diamond lat-
tice, one observes complete miscibility at high tempera-
tures, while phase separation occurs at low temperatures. If
the lattice were rigid, the transition would fall in the
universality class [29] of the three-dimensional Ising
model. The compressible system in the constant-pressure,
semigrand canonical ensemble, however, clearly shows
mean-field critical behavior, providing evidence for the
importance of long-range elastic interactions [28]. This
can be rationalized as follows: The order parameter cou-
ples directly to the fluctuations of the volume of the system
or to the elastic strain. In contrast to the compressible Ising
model [30] with strict spin-up/spin-down symmetry, one
now has a correspondence between the mean volume and
the mean order parameter (like for hydrogen in metals
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FIG. 1. Profile of the local magnetization hmni � hSiii2n of
the 8� 8� 12 system for different block sizes B (values quoted
in the key), shown by solid lines, and the total profile of the 4�
4� 6 system (this would correspond to B � 16) as a dashed
line. The symbols present the actual simulation data, while the
curves are fits to a tanh profile which is the standard mean-field
result for an intrinsic profile. Note that hmni is related to the
concentration profile via ��z� � �1� hmni�=2. The inset shows
the squared width vs B, choosing a logarithmic abscissa to show
that there is no regime where w2 / lnB holds, rather w2 satu-
rates at a finite value rather quickly.
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[31]). This implies that one can also use the strain as the
fundamental order parameter, as it is done in Cowley’s [32]
theory of structural phase transitions. There the transition
is predicted to be a mean-field-like one because the order
parameter couples only to the volume mode and the lon-
gitudinal phonons, with the former being intrinsically
softer than the latter, due to the existence of a nonvanishing
shear modulus [30,33]. Therefore the bulk mode already
orders before any of the other modes has a chance to
become critical.

The Keating-like [34] Hamiltonian of our model [28] is

H �
X

hi;ji

��JSiSj � E�Si; Sj�
r2ij � R2
0�Si; Sj��

2�

�
X

hi;j;ki

A�Si; Sj; Sk�
rij � rkj

� R0�Si; Sj�R0�Sk; Sj�=3�
2; (2)

where the pseudospins Si � 1 represent A vs B, rij is the
bond vector between the sites i and j, �hi;ji denotes a sum
over nearest neighbors, and �hi;j;ki denotes the sum over
two nearest neighbor bonds i; j and j; k with common
vertex at site j. The ‘‘exchange constant’’ of the Ising
model is J � 0:005 eV [28], and the constants defining
the energies E�Si; Sj� and A�Si; Sj; Sk� are given in
Ref. [28]. The key feature of this model is that the two
species prefer different bond lengths R0: R0�1; 1� �
2:352 �A and R0��1;�1� � 2:450 �A, and R0�1;�1� �
2:401 �A, respectively. If all three choices of R0 were taken
the same, a compressible lattice with no mismatch between
A and B would result.

We choose a L� L�D geometry with periodic bound-
ary conditions in the x, y direction and two free L� L
surfaces on which surface chemical potentials act, such
that at z � 0 the A-rich and at z � D the B-rich phase is
preferred. Denoting the surfaces at z � 0 and z � D with
‘‘(1)’’ and ‘‘(2),’’, respectively, this additional part of the
Hamiltonian [35] is

H surf � ���1�
A

X

i2�1�

�Si;�1 ���2�
A

X

i2�2�

�Si;�1

���1�
B

X

i2�1�

�Si;�1 ���2�
B

X

i2�2�

�Si;�1 (3)

with ��1�
B � ��2�

A � 0, ��1�
A � 0:0582 eV, ��2�

B �
0:0418 eV. This choice means that the left wall prefers A
with the same strength with which the right wall prefers B.
We apply the NpT ensemble.

The total number of particles is N � 8L2D because the
diamond lattice consists of 8 interpenetrating simple cubic
lattices whose lattice constant corresponds to the linear
size of the diamond conventional cell. We choose NA �
NB � N=2, and normally initialize the system such that
particles for 0 � z � D=2 are of type A and for D=2 �
z < D are of type B [36]. Applying moves in the constant-
pressure ensemble, the concentration profile is equilibrated
09610
by allowing for ‘‘spin exchange-type’’ of moves between
arbitrary pairs of sites. The positions are equilibrated by
trying to move a particle from its old position ri to a
randomly chosen new position r0i within a small surround-
ing area of the old position [28,35]. In the surface plane,
only lateral motions are permitted. To allow for faster
equilibration, also nearest neighbor relaxation moves of
the type proposed by Kelires [37] were implemented. Two
sizes were utilized (4� 4� 6 and 8� 8� 12) and be-
tween 3� 106 and 107 Monte Carlo steps per site were
used for the averaging. Temperatures studied were kBT �
0:005, 0.006, and 0.007 eV [35], but here only the results
for the lowest temperature are described. Parallel to the
surfaces we observe an average lattice constant a �

5:5307 �A which is similar to the arithmetic mean of the
lattice constant that would result for pure Si and pure Ge
from the Keating potential [34], �a � 5:5449 �A.

Figure 1 shows our central result, namely, evidence that
the interfacial profile is independent of both L and D. By
analyzing subsystems of size �B=4� � �B=4� �D instead
of the full system L� L�D, we observe that there is
practically no dependence on B, unlike the findings for the
rigid Ising model [20,21], the lattice model for polymer
blends [4], etc., Only when the sub-block linear dimension
is reduced to the size of a few Å, as is the case for B � 4,
does the interfacial profile sharpen. The behavior at higher
temperatures is qualitatively similar [35].

We believe that this phenomenon can be explained as
follows: Consider Fig. 2(a), where the analogous situation
for a two-dimensional square lattice is shown. The pure
species have the same type of unit cell (square), but differ-
ent lattice spacings. In the coherent, demixed alloy the
atom-atom distances parallel to the interface will assume
1-2
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FIG. 3. Angles between nearest neighbors (nn) termed A;B,
and C;B being the atom in vertex position, plotted vs the layer
index in the z direction across a 8� 8� 12 system. The layer
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atom has layer index n). The arrows mark the angle ! � 109:47�

of the perfect tetrahedron. The data points correspond to an
average over 2705 configurations taken at intervals of 103

Monte Carlo steps. Only angles appearing on average at least
once per plane are shown. Errors are smaller than the size of the
symbols.
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FIG. 2. (a) Qualitative sketch of a typical configuration of a
coherent two-dimensional binary alloy with mismatch in the
lattice spacing. The pure species both crystallize in a square
lattice. (b) Distances in planes parallel to the interface (001) in Å
vs layer index n for the 8� 8� 12 system. The arrows indicate
the ideal bond lengths R0 used in the Keating potential.

PRL 95, 096101 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
26 AUGUST 2005
some compromise value between the two optimum spac-
ings for A and B throughout the system. In other words,
none of these parallel bonds is relaxed—they are all either
stretched or squeezed. Conversely, the bonds perpendicular
to the interface are all relaxed, except for a few near the
interface. We note that the approximation used in Fig. 2(a)
(complete neglect of bond angle fluctuations, which must
remain very limited as a result of the boundary conditions),
has been put forward previously [38]. Obviously, this
behavior implies that the introduction of the interface costs
a free energy which does not scale as the area L2, but rather
as the volume L2D. This implies an infinite interfacial
tension. It should be noted that the periodic boundary
conditions correspond to the condition of coherency in
the real alloy. These considerations show that coherency
can only occur up to a certain length scale beyond which
rupture of the network (incoherent phase coexistence)
becomes more favorable. This latter phenomenon is well-
known from metallurgy [39].

Furthermore, not only the introduction but also the
deformation of an interface costs a free energy which
scales as the volume, implying that the interfacial stiffness

 in Eq. (1) is infinite (proportional to the film thickness
D), such that capillary waves are suppressed. This exten-
sive free energy penalty for deformation can be shown
within the framework of continuum elasticity theory [25].
For anisotropic elasticity (which is the case here), the
elastic Hamiltonian can be written as a pairwise long-
ranged strain-strain interaction. From this, one can show
that the elastic free energy penalty for an A inclusion in a B
matrix is proportional to the system volume [25], and
depends on the shape of the inclusion. A shape change,
however, is equivalent to deforming the interface. The
effect of an extensive interfacial stiffness is qualitatively
different from a mere modification of the capillary wave
09610
spectrum (e.g., a cutoff with a concomitant correlation
length �k); interface fluctuations are eliminated because
their energy is infinitely larger than kBT.

Figure 2(b) shows the layer-layer distances of the planes
parallel to the interface and demonstrates that the configu-
rations sketched in Fig. 2(a) are indeed typical for our
system. It should, however, be noted that in our case
(diamond lattice) the main distortion does not come from
the bond lengths, but rather from the local bond angles.
The A-A, B-B, and A-B nearest neighbor distances essen-
tially retain their values independently of z (data not
shown), while the bond angles deviate substantially from
the ideal tetrahedron value (Fig. 3). This distortion occurs
throughout the sample and stores most of the elastic energy
cost of the interface.

This picture is further corroborated by simulations in the
semigrand canonical ensemble. Here, we find that a struc-
ture of the type shown in Figs. 1–3 generally is unstable;
rather the interface gets bound either to the boundary at
z � 0 or at z � D (Fig. 4) [40]. Unlike the Ising model on a
rigid lattice our model does not exhibit an interface deloc-
alization transition where the interface unbinds from one of
the boundaries and moves towards the center of the film
[18]. Rather the interface stays bound to one of the walls up
to the critical temperature where the film disorders
(kBTc � 0:0175 eV, note that in the canonical ensemble
Tc is expected to be substantially smaller [38]). This lack
1-3
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of interface delocalization, which would only be expected
above the temperature of a wetting transition, is consistent
with the finding [41] that in adsorbed solid layers strains
caused by the substrate potential prevent complete wetting
of a solid film, and with the special role of the volume
mode which explains the system’s mean-field-like critical-
ity in the bulk.

In summary, we have shown that interfaces between
coexisting phases on compressible lattices behave very
differently from their counterparts on rigid lattices or fluid
mixtures: capillary waves are essentially suppressed, an
intrinsic interfacial profile with mean-field character is
easily found, but interface formation is intimately linked
to large-scale elastic distortions of the lattice, and therefore
it is generally unfavorable to form planar interfaces over
large length scales separating large homogeneous domains.
The consequences of these observations are far from being
fully explored.
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