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Simulations of Spinodal Nucleation in Systems with Elastic Interactions
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Systems with long-range interactions quenched into a metastable state near the pseudospinodal exhibit
nucleation that is qualitatively different from classical nucleation near the coexistence curve. We observe
nucleation droplets in Langevin simulations of a two-dimensional model of martensitic transformations
and determine that the structure of the nucleating droplet differs from the stable martensite structure. Our
results, together with experimental measurements of the phonon dispersion curve, allow us to predict the
nature of the droplet. The results have implications for nucleation in many solid-solid transitions and the
structure of the final state.
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An outstanding challenge in solid-solid phase transfor-
mations is to understand the nucleation and growth of the
transformed phase in strain based materials such as mar-
tensites, ferroelectrics, and multiferroics. Although classi-
cal nucleation theory has been invoked to describe
nucleation phenomena in these materials [1–6], it is pos-
sible that the presence of long-range elastic forces greatly
influences the probability of nucleation and subsequent
growth that determines processing and material behavior.
For example, the transformation susceptibility determined
by nucleation is one of the basic factors for the harden-
ability of steels. Even though heterogeneous nucleation,
which is sensitive to the distribution of appropriate struc-
tures in the parent phase from which product phase nuclei
may be triggered, has long been considered important for
martensites [7], homogeneous nucleation also has been
observed if the transformational driving force is suffi-
ciently large. However, because of the difficulty of experi-
mentally determining nucleation droplet structure in
martensites [1], little is known quantitatively about the
morphology of the nucleating droplet or ‘‘embryo,’’ in-
cluding its size distribution or nucleation rate for homoge-
neous or heterogeneous nucleation. The aim of this work is
to probe for the first time the nature of the nucleating
droplet and associated fluctuations by performing meso-
scale simulations using realistic nonlinear models for mar-
tensites. We find that the classical theory does not
accurately describe the structure of the nucleating droplet,
but that concepts associated with nucleation near a spino-
dal [8,9] account for the observed droplet morphology. Our
work also provides the basis for investigating nucleation in
systems where long-range elastic forces crucially deter-
mine the morphology.

Long-range elastic interactions are important in strain
based materials, such as martensites, and result from the
requirement of compatibility of strain components that is
necessary to preserve the continuity of the elastic media
[10,11]. We refer to systems with long-range interactions
as near-mean field, and use several characteristics of mean-
field theory to study nucleation in these systems. Mean-
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field systems have a well-defined spinodal, the limit of
metastability; near-mean-field systems have a pseudospi-
nodal, which becomes better defined as the range of inter-
action increases [12].

Spinodal nucleation, i.e., nucleation close to the pseu-
dospinodal, is predicted to produce a ramified droplet with
a small amplitude [8,9]. The droplet need not have the
same structure as the stable phase [13,14], unlike in clas-
sical nucleation where the droplet is compact and has the
same structure as the stable phase [15]. Spinodal nuclea-
tion has been observed in molecular dynamic simulations
of simple models [16,17], but its predictions have not been
tested on more realistic representations of materials such as
martensites.

We model a martensitic transformation using a
Ginzburg-Landau free energy [10,11,13]:
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where � is the deviatoric strain, e1 is the compressional
strain, e2 is the shear strain, U� ~� � ~r� ~r0� is the Fourier
transform of
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� � ��� �c�=��0 � �c�, � is the dimensionless tempera-
ture, �c is the critical temperature where the � � 0 aus-
tenite minimum of F0 disappears, �0 is the temperature
where the three minima of F0 are degenerate, and R is the
range of the interaction. For metals R is quite large. The
quantity Fcs can be written as nonlocal surface and bulk
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terms in � by using the St. Venant compatibility equations
[10]. If we ignore defects, the bulk term kernel in k space is
given by Eq. (2), �1=r2, and vanishes at kx � ky. In the
limit of a sharp surface boundary, the surface term �1=r,
and the energetic competition between this term and Fgrad

determines the twin width
����
L

p
[18]. As in Ref. [13], an

exponential cutoff has been added to U� ~�� in Fcs to simu-
late defects and the surface has been given a more realistic
width. If the width of the interface of the droplet scales as
the correlation length �, the surface term can be neglected
for long-range interactions near the spinodal �� R
[13,19]. All variables are dimensionless and scaled, as
we describe in detail.

We use overdamped Langevin dynamics so the equation
of motion for � is
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where the Gaussian noise � is related to the dimensionless
temperature � by the fluctuation-dissipation relation,

h�� ~r; t��� ~r0; t0�i � 2��2�r� r0���t� t0�: (4)

Several predictions have been made [13] for the critical
droplet when the system is quenched to just above the
spinodal �s, with �� � �� �s � 1. Near-mean-field the-
ory is applicable when the fluctuations about the mean of
the order parameter are much less than the mean, i.e., when
the Ginzburg parameter G 	 h�i2=h�2i � 1. We can re-
place h�2i by �� � �@�=@�, where � is the zero-stress
isothermal susceptibility and the stress � is the conjugate
field to the order parameter strain. Spatial averages are
approximated using the appropriate power of the correla-
tion length. The nucleation barrier in d � 2 is proportional
to G 	 �2�2=���� 	 �2�2=��c�� � 1 [13], where � 	

2=��. Because� 	
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and �s � jaj2=�8b�, so G 	

jaj��=�4�c�. The droplet is predicted to be modulated at
the largest (real) value of the wave number k0 at which the
structure function [20] S�k� 	 �� jajk2=4� bk4=8�
~U�k���1 diverges. If a > 0, k0 � 0, and the droplet is
homogeneous, with � in the droplet either everywhere
positive or negative. If a < 0, k0 �

������������
jaj=b

p
, and the droplet

is modulated with wavelength w � 2$
������������
b=jaj

p
� �, with

alternating regions of positive and negative�. Note that w,
unlike the twin width, is due to competition between the
two gradient terms, because the surface term is negligible
near the spinodal for systems with long-range interactions
and the bulk term primarily determines the orientation.
These predictions apply at early times near the spinodal.
During the growth of the martensite phase, the surface will
eventually sharpen and twinning will be restored [9].
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One of our main goals is to simulate martensites as
realistically as possible. To this end, we need to relate
the dimensionless simulation parameters in Eq. (1) to
empirically accessible parameters. By extending the po-
tential in Ref. [11] to include a second gradient term, the
three-dimensional (elastic) free energy near the critical
temperature in terms of measurable quantities is

F�%3� �
Z L

0
d3r

�
C1

2
%21 �

C2

2
%22 �

C3

2
%23 �

C4

4
%43 �

C6

6
%63

�
'1
2
� ~r%3�2 �

'2
4
�r2%3�2

�
; (5)

where a0 is the crystal lattice spacing, L is the linear
dimension, C1 through C6 are elastic constants, and
'1=a

2
0 and '2=a40 are strain-gradient coefficients in units

of N=m2. To minimize finite size effects, L=a0 � �. The
parameters in Eq. (5) can be determined empirically [11].
We can approximate the [110] acoustic phonon dispersion
curve !�k� from neutron scattering at small k by a Taylor
expansion in �, �0!2 � a2k2 � gk4, where �0 is the mass
density. The coefficient a2 is determined from the slope
and is proportional to the corresponding elastic constant C3

and, therefore, � [21–23]. The coefficient g is determined
from the curvature and is proportional to the strain-gradient
coefficient '1=a20 and, therefore, a [23]. Including the
strain-gradient term in the dispersion implies a nonlocal
effective elastic constant and a sound velocity that depends
on the magnitude and direction of ~k. This method can, in
principle, be extended to include the nonlinear and higher
order gradient terms in the free energy [24].

We scale all the elastic constants by A0 � 9C3
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martensite minima of the homogeneous part of F in
Eq. (1b) near unity, and scale all distances by a0. We define
the dimensionless variables ~~r � ~r=a0, ~L � L=a0, ~F �
F=�A0a
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To find the proper scaling for the time, the noise, and the
temperature, we use the Langevin equation for %3� ~r; t�,
which is Eq. (3) with �! %3, F��� ! F�%3�, and an
explicit friction coefficient * multiplying the time deriva-
tive. The dimensionless time and noise are ~t �
A0a0t=�L*%20� and ~� � L%0�=�A0a0�. The factor of L is a
result of going from %3�x; y; z; t� to ��x; y; t�. The
fluctuation-dissipation relation Eq. (4) requires that � �
kBT=�A0a

3
0�. �c and �0 are defined similarly with T re-

placed by Tc, the critical temperature, and T0 is the tem-
perature at which the three minima of the homogeneous
part of F in Eq. (5) are degenerate. Note that we can change
the effective temperature of the simulations by changing
either T or a0. We drop all tildes in the following.

To discretize the Langevin equation, we used a simple
forward Euler method [25] for the time derivative. Higher
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FIG. 1. Evolution of h�2�t�i for a > 0; the original run and
three interventions at t � 2355. h�2�t�i of the original run grows
rapidly from its metastable value to its stable value at t 	 2430.
If the intervention run is similar to the original run, the same
droplet is assumed to have grown; otherwise, it is assumed that
the same droplet did not grow. Some interventions are ambig-
uous. In this run the intervention time of 2355 is close to the
estimated nucleation time of t�n � 2356 35.
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order algorithms take more time and give similar results.
The noise � is found by multiplying the standard deviation
of the noise �� by a random number chosen from a
Gaussian distribution with unit variance, Gi;j;0 [25]. On
the lattice �2�~r� ~r0� 	 1=�x2 and ��t� t0� 	 1=�t, so

�� ~r; t� 	 ��Gi;j;0, where �� �
������������������������
2�=��x2�t�

p
.

The nonlocal term in the Langevin equation that arises
from Eq. (1e) is a convolution with K̂� ~k� �R
d2�U� ~��e�j ~�j=Re�i ~k� ~�. K̂� ~k� needs to be computed only

once. The factor e�j ~�j=R is computed with the origin at the
center of the lattice. The indices i and j correspond to x and
y, l and m correspond to kx and ky, and 0 corresponds to t.
We write ��x; y; t� ! �i;j;0, Û�kx; ky� ! Ûl;m, e�j ~�j=R !

Ei;j, and K̂�kx; ky� ! K̂l;m 	 F �Ei;jF
�1�Ûl;m��, where F

and F�1 represent fast Fourier transforms. The convolu-
tion integral is computed as
Z L
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The accuracy of our algorithm requires treating both
spatial derivatives to fourth order in �x, including cross
terms in r4�. If we define ��1�
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We use Tc � 268 K, T0 � 290 K, and A2 � 2A1, for all
our simulations; these values correspond to FePd [11] so
that our simulations are as realistic as possible. We take
L � 64, �x � 0:05, and �t � 0:01 and choose the values
of t, a, and b so that the numerical solution is stable. Our
solutions were checked for accuracy by comparing the
simulation results to the exact analytical solution for the
linear case without the noise and nonlocal terms.
Numerical stability of the complete equation of motion
was checked by varying �t and �x. We chose a and b so
that G 	 5 and � 	 16 � L=4. We chose A1 < 1 so that
the core of the droplet will be more visible. We varied the
nucleation rate primarily by changing a0.

For a > 0 we take a � 6:32, b � 0:01, R � 6:4, � �
6:17� 10�3, A1 � 1� 10�3, and a0 � 2:1544� 10�8 m.
FePd has a crystal lattice spacing of 	 3 �A, so this value of
a0 corresponds to a coarse-graining factor of 70 and sam-
ple size of about 1:38 4m. The value of � corresponds to
T � 268:14 K, and a corresponds to '1=a

2
0 � 2:79�

109 N=m2. The value of a is reasonable compared to the
value of 2:5� 1010 N=m2 for FePd quoted in Ref. [11].

For a < 0 we take a � �1:61, b � 0:652, R � 4, � �
0:5, A1 � 0:6, and a0 � 2:7� 10�8 m. These values cor-
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respond to the modulation wavelength w 	 4, �s �
0:496 95, T � 279 K, and �� � 3:048� 10�3.

We begin the simulation with �� ~r� chosen at random
about the metastable austenite minimum at � � 0. In a
short time,��~r� equilibratesat thechosentemperature. On a
much longer time scale, the thermal noise causes a critical
droplet to appear. By looking at the evolution of the spatial
average, h�2�t�i, we can estimate the nucleation time. In
Fig. 1 we see that the system went from a metastable state
with h�2i 	 0 to the stable state with h�2i 	 1 at the time
t � 2430. Because we expect the amplitude of the droplet
to be close to that of the metastable phase, we expect the
nucleation time to be prior to the rapid increase in h�2i.

To determine the nucleation time more precisely, we use
an intervention technique [26]. Because the nucleation
droplet is a saddle point [8,26], the droplet has equal
probability of growing to the stable state or disappearing
if we perturb the system at the nucleation time. We use this
saddle point property to find the nucleation time. We restart
the simulation at the estimated nucleation time, and inte-
grate the equations of motion using a new sequence of
random numbers for the noise. Our criterion is that if 8 4
of the 16 runs with different random number sequences
show that h�2i grows at roughly the same time as in the
original run, then the intervention time is equal to the
nucleation time. We then look at snapshots of � to see if
we can identify the droplet.

For a > 0, the nucleation time is t�n � 2356 35, as in
Fig. 1. A snapshot of � at t � 2356 is shown in Fig. 2(a).
Although only the core of the droplet is visible above the
noise, the droplet is homogeneous, as predicted.
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(a) (b)
FIG. 2 (color). From left: (a) The de-
viatoric strain � for a > 0 at t�n �
2356. The amplitude of � ranges
from �0:08 (dark blue) to 0.025 (yel-
low). The part of the droplet visible
above the noise is clearly homogene-
ous, showing no modulations between
the two low temperature minima (red
and blue). (b) The deviatoric strain �
for a < 0 at t�n � 1236:5. The ampli-
tude of � ranges from �0:2 (dark blue)
to 0.2 (red). In the part of the droplet
that is visible, the modulations between
the low temperature minima (red and
blue) have the wavelength w 	 4 pre-
dicted by Ref. [13].
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For a < 0, the nucleation time is t�n 	 1236:5 1:5.
The error in t�n is much less than for a > 0 because the
slower growth in h�2i for a < 0 makes fewer of the inter-
ventions ambiguous. A snapshot of the field at t � 1236:5
is shown in Fig. 2(b). As predicted in Ref. [13], the droplet
has modulations with wavelength w 	 4. This modulation
is different from the twinning in the stable phase which
occurs at wavelength 5�

����
L

p
� 8 [10].

Our results are important for nucleation in many mate-
rials with long-range interaction in which strain couples to
another physical variable, e.g., polarization in ferroelec-
trics, magnetization in magnetoelastics, and other multi-
ferroics. We found that for elastic systems the description
of nucleation is subtle because of the presence of bulk-
interface elastic compatibility constraints that are mani-
fested as long-range interactions.

In summary, when the austenite is quenched to near the
pseudospinodal, the structure of the nucleation droplet
differs from the structure of the stable martensite phase.
If the curvature of the phonon dispersion curve at small k is
positive, then a > 0, and the droplet is homogeneous. If the
curvature is negative, then a < 0, and the droplet is modu-
lated by a wavelength w. Our parameters are consistent
with austenite to martensite transitions in FePd. Hence, we
conclude that the classical nucleation picture is not appli-
cable to these transitions and the spinodal nucleation sce-
nario is a better approach for understanding these
transitions.
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