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Influence of Aspect Ratio on Barrier Properties of Polymer-Clay Nanocomposites
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The barrier properties of polymer-clay nanocomposites, with far less inorganic contents of layered-
silicate fillers, are remarkably superior to those of neat polymers or their conventional counterparts. A
simple renormalization group model is proposed to assess the influence of geometric factors (such as
aspect ratio, orientation, and extent of exfoliation) of layered-silicate fillers on the barrier properties of
polymer-clay nanocomposites. The results show that the aspect ratio of exfoliated silicate platelets has a
critical role in controlling the microstructure of polymer-clay nanocomposites and their barrier properties.
The estimated percolation thresholds of clay content for minimum permeability are in good agreement

with experimental data.
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Recently, the intriguing microstructure and excellent
properties of polymer-clay nanocomposites (PCNs) have
stimulated much interest and research within both the
scientific and engineering communities [1,2]. PCNs are a
new emerging class of organic-inorganic hybrid materials.
With much less inorganic contents of clay (layered-
silicates such as montmorillonite, saponite, kaolinite, hec-
torite, etc.,) than comparable glass- or mineral-reinforced
polymers, PCNs exhibit physical and mechanical proper-
ties significantly different from their more conventional
counterparts. They have good thermal stability, high heat
distortion temperature, superior barrier properties (gas/lig-
uid permeability, flammability), and high specific stiffness
(or strength) at low concentrations of clay ( <5 wt %) in a
range of polymer matrices (polyimide, polyester, polycap-
rolactone, etc.,) [3—7]. Clay particles like montmorillonites
are crystalline materials with a sandwich structure (one
octahedral sheet of alumina between two tetrahedral sheets
of silica), which are composed of stacked platelets with
thickness 1 nm, diameter from 10 to 1000 nm, and the
spacing between platelets less than 1 nm. It is generally
believed that the improvements of their barrier and other
mechanical properties are mainly caused by the high aspect
ratio (10-1000) or large surface area of exfoliated clay
particles and the strong interfacial interaction between the
silicate platelets and the polymer matrix [1-7].

The dependence of barrier properties on the extents
of intercalation (or exfoliation), orientation, and dis-
persion of nanometer-sized silicate platelets in a polymer
matrix is not well understood to date. Let us consider
the gas/liquid permeability of PCNs, a typical measure-
ment of barrier property, as an example. It is well known
that the permeability k of gas/liquid molecules through
a homogeneous medium can be described by Darcy’s
law, k = ud/Ap, where u is the flow rate and Ap is the
pressure difference across a specimen with thickness d.
The permeability problem is, however, actually more com-
plicated than Darcy’s law predicts. For instance, in
C,s-montmorillonite poly (butylenes succinate) nanocom-
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posites, there was a sharp decrease of the O, gas perme-
ability at 1.25 vol % concentration of the montmorillonite
[5]. A very similar phenomenon was also discovered in
polyester-clay nanocomposites [6]. It is clear that Darcy’s
law for the prediction of permeability cannot explain these
anomalous barrier behaviors observed in PCNs. In this
Letter, a simple renormalization group model is proposed
to assess the influence of geometric factors (such as aspect
ratio, orientation, and extent of intercalation or exfoliation)
of exfoliated clay fillers on the barrier properties of PCNs.

In terms of morphology and cohesive strength between
silicate platelets and the polymer matrix, there are three
representative types of PCNs: intercalated, flocculated,
and exfoliated nanocomposites [4,5]. In intercalation, the
polymer chains swell the interplatelet or gallery spacing of
clay particles and lead to a well-ordered alternating
polymer-clay nanostructure. In exfoliation, the clay parti-
cles are fully separated or delaminated from cubical to flat
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FIG. 1. Schematic of exfoliated clay morphologies of PCNss,
where inset (a) shows the state of intercalation and inset (b) is a
simple tortuosity-based model to describe the gas/liquid perme-
ability in filled polymers. Note the concentration of clay is much
lower than that shown in the sketch.
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platelets and individually dispersed in the matrix (see
Fig. 1). The flocculated structure lies between intercalation
and exfoliation. To achieve full exfoliation of clay in a
polymer matrix, the clay particles must be premodified
with an organic ammonium surfactant. Since silicate pla-
telets are impenetrable to diffusing gas/liquid molecules,
the influence factors on barrier properties of PCNs mainly
depend on the degree of exfoliation (or intercalation), the
state of aggregation and dispersion of silicate platelets in
the matrix, such as aspect ratio L/W (L and W are length
and thickness of silicate platelets, respectively), dispersion
distance ¢, orientation #, volume fraction ¢, etc., (see
Fig. 1). Other physical polymer matrix properties (such
as crystallinity and affinity) also affect the barrier proper-
ties of PCNs. Here, for simplicity, we only consider the
effects of geometric factors of clay particles in a polymer
matrix, and assume the motion of gas/liquid molecules in
PCNs is steady and stable. From dimensional analysis, the
relative permeability &’ is given by k' = kpen/kp =
f(L/W, /W, 0, ), where kpcy and kp are the permeabil-
ity of PCNs and polymer, respectively, and f is a dimen-
sionless function of four parameters: L/ W, £/W, 6, and ¢.

Because a diffusing gas/liquid molecule cannot perme-
ate the silicate platelets, it must go around them thus
leading to a tortuous path. Based on a tortuosity argument,
a simple model was developed, and widely used to describe
the permeability of filled polymers [8]. In an ideal case,
where clay particles are completely exfoliated and uni-
formly dispersed along the preferred orientation (6 = 0°)
in the polymer matrix (inset in Fig. 1), the tortuosity factor
7 (defined as the ratio of actual distance d’ to shortest
distance d) becomes

d/
T=—=

L
7 1+ W . ()
Clearly, the relative permeability k' decreases as the aspect
ratio L/W (degree of exfoliation) and concentration ¢ of
the clay fillers increase, that is, k' ~ 7. However, recent
experimental results showed that, in C;g-montmorillonite
poly (butylenes succinate) nanocomposites, the gas perme-
ability decreased systematically with increasing clay con-
tent up to 1.1 vol % (2.8 wt %) as expected from Eq. (1),
and then there was a sharp drop in gas permeability with a
clay content of 1.4 vol % (3.6 wt %) [5]. These test results
proved that there was a percolation threshold of clay con-
tent. Similar behaviors were also observed for other physi-
cal properties of PCNs [3-6]. In fact, the gas/liquid
permeation process in PCNs can be viewed as a typical
percolation phenomenon [9]. But, in contrast to classical
percolation, it is more like an aspect ratio-controlled per-
colation in the pressure difference direction [10]. As the
clay content increases, the correlation size of barrier clus-
ters increases monotonically, and at a critical value, the
correlation length approaches infinity. Hence, the critical
value of clay content in PCNs can be studied using renor-
malization group (RG) theory, which provides a powerful

method for modeling large heterogeneous systems [11].
Several simple models based on the real (position) space
RG approach have been successfully applied to studies of
earthquake prediction, transport in porous media, micro-
crack connectivity, and fragmentation of rocks [12,13].
The basic hypothesis of the RG approach is the proba-
bility p that a cell acts as a barrier, is the same at all orders.
The essential step is construction of a renormalization
transformation, p’ = R,(p), between original probability
p and renormalized probability p’ when the degree of
coarse graining in observation is changed [11]. Let us
consider a b?-site Kadanoff cell with a ratio of coarse
graining b = 2 and dimension d = 3. Figure 2 shows a
Kadanoff cell comprising 8 elements. In each cell, there
can be zero to eight elements occupied (by silicate plate-
lets), and hence there are 28 =256 possible combinations
[12]. Excluding multiplicities, there are 22 topologically
different configurations, in which the barrier elements are
indicated by solid dots at their corners (see Fig. 2). Here, an
element in a cell is considered a barrier when it contains
silicate platelets. To specify whether a cell is a barrier or
not, the simplest way is to find if there is a permeation path
through the cell. As exemplified in Fig. 3, cells (a) and
(b) with 4 barrier elements are permeable and imperme-
able, respectively, corresponding to cases 4c and 4d in
Fig. 2. Thus, in all 256 combinations, partial or whole
configurations 4a, 4d, 4e, 4f, 5a, 5b, Sc, 6a, 6b, 6¢c, 7,
and 8 are barrier cells, which are highlighted in bold letters
beneath the relevant configurations (see Fig. 2). It is noted
that since permeation is mainly along the pressure differ-
ence direction (from top to bottom), only partial combina-
tions in configurations 4a, 4d, 4e, 5a, 5b, and 6a can act as
barriers. Let us use again a cell with 4 barrier elements as
an example. The probability that the cell is a barrier can be
represented by 16p*(1 — p)*, where 16 is the number of
barrier combinations (4a, 4d, 4e, and 4f in Fig. 2).

0(1) 1(8) 2a(12) 2b(12) 2c(4) 3a(24 3b(24) 3c(8)

4a(6) 4b(8) 4c(24) 4d(24) 4e(6) 4(2)

ﬁﬂﬂﬁﬁﬂ

4a(2) 4d(8) de(4) 4(2)
5a24)  5b24)  5¢(8) 6a(12)  6b(12)  6c(4)  7(8) 8(1)
HEHg O HEH
5a8)  5b(16)  5¢(8) 6a8)  6b(12)  6¢c(4) 78) 8(1)

FIG. 2. An n-order cell is shown as a simple cube with its
corners representing eight constitutive (n — 1)-order elements.
Each corner is marked by a solid dot when the corresponding
(n — 1)-order element acts as a barrier. There are 22 different
topological configurations labeled O, 1, 2a,..., 8, with their
multiplicities given in parentheses. Of all 28 = 256 combina-
tions, there are 81 cases in which the silicate platelets act as
barriers (and these are highlighted in bold letters below the
relevant configurations).
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FIG. 3. Illustration of two typical topologies referenced to
Fig. 2: (a) represents case 4c in which the gas/liquid molecules
can easily pass through the matrix; and (b) is for case 4d, where
the silicate platelets (marked in gray color) act as barriers.

Considering all possible configurations with 5, 6, 7, and
8 barrier elements and summing up all the probabilities as
noted in Ref. [14], the renormalization transformation
R,(p), that is, the probability p’ that a cell of order (n +
1) is a barrier versus the probability p that a cell of order n
(i.e., an element of order n + 1) is a barrier, follows the
equation

p' = R,(p) = 16p* —32p° +24p° — 8p” + pb. (2)

The iterative relation in Eq. (2) crosses the straight line,
p' = p, at p=p=p,=0718, which is an unstable
fixed point that separates the region of stable behavior
from the region of unstable behavior. If p < p,, the solu-
tion iterates to one stable point p = 0 as n increases, and
no barrier occurs. On the contrary, if p > p_, the solution
iterates to another stable point p = 1 as n increases, and
the system acts as a barrier. Bifurcation of the solution
occurs at p = p,, which is the critical value of clay content
for minimum permeability [15].

Next, let us consider the nanostructure of exfoliated clay
particles and determine the probability p of an element that
is a barrier. As already mentioned, p is determined by
many factors such as aspect ratio L/ W, dispersion distance
&, orientation 6, clay content ¢, etc. From the classical
theory of suspension rheology [16], in order to distribute
uniformly exfoliated silicate platelets in a polymer matrix,
the dispersion distance & between two platelets should be
equal to or greater than its length L, i.e., £ = L. Thus, the
critical volume fraction can be estimated by ¢, =
L*W/L?® = W/L. For layered silicates with thickness
W =1 nm and length L = 100 nm, its critical volume
fraction is about 1%. But it is noted that this is a locally
sufficient (but not necessary) condition for exfoliation.
Based on this crude estimate, when the clay filler concen-
tration is small, the geometric influence factors (such as
L/W, &/W, 6, etc.) on the barrier properties in exfoliated
PCNs can be considered as independent of each other, and
the probability for an element that is a barrier is described
by p = Il p;, where p; is the probability of the ith influ-
ence driver. The following are the three main influence
factors:

(a) The influence of the extent of exfoliation or inter-
calation can be simply represented by the aspect ratio
L/W. As the extent of intercalation increases, the thickness

W of exfoliated platelets increases and the aspect ratio
L/W decreases. (b) The influence of the orientation 6 of
the silicate platelets in a polymer matrix can be represented
by an orientation parameter S, which is defined by: § =
(3cos?6 — 1)/2. Here, S =1 (6 = 0°) indicates perfect
alignment, and S = 0 (@ = 54.74°) for random distribu-
tion [17]. Thus, the effective aspect ratio with perfect
alignment becomes L/W({(cos?6) [18]. (c) The influence
of the dispersion distance & between two silicate platelets
can be considered by the volume fraction ¢. In exfoliated
PCNs, ¢ = W/ ¢ since the silicate platelets are randomly
dispersed in the polymer matrix.

Now, the barrier probability for an element in a
Kadanoff cell can be written as

25+ 1L
3w €)

= st -

At the critical point, the percolation threshold of clay
content ¢, is obtained by

3w

— Pe (4)

=571 1

where p. = 0.718 in terms of the RG model discussed
above.

The theoretical critical volume fraction ¢, versus aspect
ratio L/W (S = 0) and orientation S (L/W = 100) of the
silicate platelets are shown in Figs. 4 and 5 respectively. ¢ ..
for several typical clay fillers (hectorite, saponite, mont-
morillonite, and synthetic mica) can be estimated from
their aspect ratios L/W [3] (see Fig. 4). Also, experimental
critical ~thresholds for O, gas permeability of
C,s-montmorillonite poly (butylenes succinate) (L/W =
150 and ¢, = 1.25% [5]) and polyester-clay nanocompo-
sites (L/W = 200, ¢, = 1.4% [6]) are plotted in Fig. 4
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0.03 +
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(]
0.014 Montmorillonite
Synthetic mica
0.00
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FIG. 4. Critical volume fraction ¢, versus aspect ratio L/W of
silicate platelets with S = 0. Thresholds for several typical clay
fillers are obtained directly from Eq. (4) based on their aspect
ratios [3] (open symbols). Two solid symbols indicate the test
data of O, gas permeability in C,g-montmorillonite (L/W =
150 and ¢, = 1.25% [5]) and polyester-clay (L/W = 200,
¢. = 1.4% [6]) nanocomposites. There is good agreement
with the theoretical curve.
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FIG. 5. Critical volume fraction ¢, versus orientation S of
silicate platelets with L/W = 100. The insets are three typical
patterns of silicate platelets in a polymer matrix for cases of § =
—1/2, 0, and 1, respectively.

and they agree well with the theoretical predictions. It is
obvious that the aspect ratio L/W (extent of exfoliation) of
clay particles plays a key role in controlling the barrier
properties of PCNs. In Fig. 5, the critical volume fraction
¢, versus orientation S of silicate platelets with L/W =
100 is shown, where the insets represent three typical
patterns (S = —1/2, 0, and 1) of silicate platelets in a
polymer matrix. In many real cases, S varies from O to 1.

Finally, it is suggested that the RG approach can also be
used to study other anomalous properties of PCNs, such as
strength and toughness, in which renormalization trans-
formation is more complex due to stress transfer and
interaction [19]. Much further work is needed to obtain
optimal parameters (or percolation thresholds) of clay fill-
ers to improve the barrier and other physical properties.

In summary, a simple renormalization group model has
been proposed to study the effects of geometric factors of
clay fillers, such as aspect ratio, orientation, and extent of
intercalation or exfoliation on the barrier properties of the
PCNs. The results show that the aspect ratio of exfoliated
silicate platelets is a most critical parameter, and the per-
meation of gas/liquid molecules in the PCNs can be viewed
as an aspect ratio-controlled percolation. The predicted
percolation thresholds of clay contents for the minimum
permeability are in good agreement with experimental
data.
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