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Melting of Colloidal Molecular Crystals on Triangular Lattices
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The phase behavior of a two-dimensional colloidal system subject to a commensurate triangular
potential is investigated. We consider the integer number of colloids in each potential minimum as rigid
composite objects with effective discrete degrees of freedom. It is shown that there is a rich variety of
phases including ‘‘herringbone’’ and ‘‘Japanese 6 in 1’’ phases. The ensuing phase diagram and phase
transitions are analyzed analytically within variational mean-field theory and supplemented by
Monte Carlo simulations. Consequences for experiments are discussed.
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FIG. 1 (color online). The model system. (a) The triangular
lattice of the external field and the three orientational states of
the dimers. (b) Four energy levels for the pairwise interactions of
dimers.
In the past decade it has been realized that soft materials
can serve as versatile model systems to study phenomena
of condensed matter physics. In particular, two-
dimensional (2D) systems of colloidal particles interacting
with light sources are ideal to mimic the adsorption of
atoms and molecules on atomic surfaces, vortices in super-
conductors with periodic pinning arrays, and many other
related phenomena [1–3]. Experimental studies on flat
substrates [4] have beautifully confirmed the existence of
a two-stage melting process mediated by the successive
unbinding of dislocations [5] and disclinations [6]. If con-
fined to a 1D periodic potential, 2D colloidal systems show
even richer behavior with reentrant melting [7] and novel
phases such as the locked floating solid [8,9]. Results from
analytical theories have been complemented by a series of
numerical simulations (see, e.g., Refs. [10–12]).

Recent experimental [13,14] and theoretical [15,16] in-
vestigations have studied the effect of 2D periodic poten-
tials on the phase behavior. In particular, experiments on
triangular light lattices [13] with a stoichiometry of three
colloids per site have motivated our research. One observes
that even at rather low potential strength the colloids tend
to group as trimers forming an almost equilateral triangle,
but with a quite significant number of defects, i.e., groups
of two or four particles. Upon increasing the potential
strength, the number of defects decreases rapidly such
that they become unobservable already for moderate in-
tensities. Then, the important low energy excitations are
the orientation of the trimers, regarded as rigid composite
objects, with respect to the lattice direction. Because of the
interaction of the trimers, long-range orientational order is
expected for sufficiently strong coupling. Alignment of the
trimers is observed experimentally [13] as soon as the
defect-free regime takes over. Interestingly, the same au-
thors also observed a loss of orientational long-range order
at even higher intensities, which was interpreted as reen-
trant melting and appears to be confirmed by computer
simulations [15].
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In this Letter we derive phase diagrams for commensu-
rate colloidal systems in high external fields by analytic
methods supplemented by Monte Carlo (MC) simulations.
The key idea is to reduce the problem to the low energy
degrees of freedom by considering the integer number of
colloidal particles that gather in a single potential mini-
mum as a rigid composite object. Its shape is determined
by the symmetry of the lattice and the number of the
constituting colloidal particles, and its size by the interplay
of interparticle repulsion and external potential. Short-time
orientational fluctuations close to the potential minima are
considered to be already averaged out, leaving only a
discrete set of gross orientations. We mainly focus on
dimers on a triangular lattice since they exhibit a rich phase
diagram and exhibit a series of intriguing phases. At the
end of the Letter we report how the phase diagram for
trimers can be obtained in a rather straightforward manner.

For an isolated dimer there are three equivalent orienta-
tional ground states on a triangular lattice, denoted by � �
1; 2; 3 (see Fig. 1). The effective interaction between the
dimers results from the screened Coulomb interaction
between the constituent colloids, which is short ranged
for the experimental conditions in Ref. [13]. Therefore, it
is appropriate to restrict the effective dimer-dimer interac-
tion to nearest neighbors. A pair of dimers can be in 32
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FIG. 2 (color online). Zero temperature ordered structures of
2D colloidal dimers: (a) ferromagnetic (FM), (b) herringbone
(HB), (c) Potts antiferromagnetic (AM), and (d) Japanese 6 in 1
(J6/1), structure. In the latter, the energy of the system does not
depend on the orientation of dimers on sites denoted by circles;
thus this structure is 3N=4 degenerate.
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configurations corresponding to one of four energy levels,
with generic ordering E1 <E2 <E3 <E4; see Fig. 1. The
relation between these model parameters and the experi-
mental control parameters like screening length and poten-
tial strength can be worked out in detail [17], but is far too
involved to be presented here. As a guidance there are the
following trends. Increasing the laser potential compresses
the dimers and thus by increasing the effective distances
between colloids of neighboring dimers reduces their in-
teraction energies and hence the values of Ei and the
spacings between them. This is the basic mechanism
underlying orientational melting. Lowering the screening
length effectively corresponds to increasing the potential
strength.

The Hamiltonian of our model system reads

H �
X3
��1

X
hi;ji�

�>
i � H� � �j; (1)

where hi; ji� denotes the pair of nearest neighbors whose
bond vector is parallel to the orientation of the dimer state
�. �i is a vector representation of the dimer configuration
�i at the site i: 1 � � � �1; 0; 0�, 2 � � � �0; 1; 0�, and
3 � � � �0; 0; 1�. For the energy matrices H� one finds in
terms of a permutation matrix
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Since a shift of the global energy scale does not affect
the phase behavior, only the three energy differences in
units of kBT constitute dimensionless parameters. Thus
one would be led to expect a three-dimensional phase
diagram. However, upon rewriting the Hamiltonian in
‘‘spin language’’ it turns out that the parameter space can
actually be reduced to only two dimensions [17]. We find,
omitting an additive constant,

H � �K
X
hi;ji

��i;�j
�M

X3
��1

X
hi;ji�

��i;���j;�; (3)

where the new energy scales K;M are given in terms of the
direct dimer interaction energies by K � �E1 	 E2 and
M � E1 � 2E2 	 2E3 � E4. This reduction greatly sim-
plifies the analysis and facilitates comparison with future
experiments with the two generic control parameters,
screening length and laser intensity [18].

For M � 0 the Hamiltonian reduces to a 3-state Potts
model. The critical properties for the 2D q-state Potts
model for q 
 4 can be determined exactly for ferromag-
netic (FM) interactions, K > 0. The critical point is known
rigorously for square, triangular, and honeycomb lattices
[19,20]. There is sufficient numerical evidence that the q 

4 solution also holds for q � 3 although an analytic proof
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is still missing. The FM–P (paramagnetic) phase transition
of the 3-state Potts model is continuous as suggested by the
assumed ‘‘exact’’ solution and corroborated by MC simu-
lations and renormalization group analysis [20].
Interestingly, a mean-field description gives qualitatively
wrong results, since it predicts a discontinuous transition.
For negative exchange coupling K < 0 the low temperature
phase is an antiferromagnetic (AM) Potts state. The results
of renormalization group, series expansions, and MC simu-
lations for the transition on a triangular lattice appear to be
controversial as far as the nature of the transition is con-
cerned [20].

The phase diagram of dimers in the external potential
forming a triangular lattice as prescribed by a generalized
Hamiltonian, Eq. (3), has a richer topology. Generically
K � 0, and one distinguishes between K > 0 and K < 0.
In both cases there are two dimensionless parameters, the
ratio of the exchange couplings ~M � M=jKj and the nor-
malized temperature ~T � kBT=jKj.

An exact analytic solution of the whole phase diagram,
except for the two Potts points, is difficult to obtain, and
one has to rely on approximative and/or numerical meth-
ods. We start with a mean-field (MF) analysis, which
allows us to determine the topology of the phase diagram
and thereby the symmetry of the order parameter in the
various low temperature phases. In particular, we employ a
variational MF approach where the full density matrix is
approximated as a product of single-site density matrices,
��f�ig� �

Q
i�i��i�. By choosing site-independent density

matrices the order parameter of the FM phase has been
found by minimizing the variational free energy.
Appropriate generalizations have been introduced to obtain
AM phases and other ordered phases; details will be pre-
sented elsewhere [17].

From the MF analysis we find the equation of state for
the respective order parameters and, in particular, the phase
boundaries. It turns out that the variational free energy for
colloidal dimers in the P-FM or AM phase is identical to
the corresponding result for the Potts model, provided one
substitutes the Potts exchange energy K by the effective
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coupling K ! Keff � K 	M=3. The critical temperatures
for the P-FM and P-AM phase transition are located at
kBTc � 3Keff=�2 ln2� and kBTc � �3Keff=�4 ln2�,
respectively.

The colloidal dimer Hamiltonian, Eq. (3), allows for new
intriguing structures that are not realized within the Potts
model. We have investigated for herringbone (HB) and
Japanese 6 in 1 (J6/1) structures, a term borrowed from
weaving patterns for chainmailles; see Fig. 2. The corre-
sponding order parameters can be obtained by (numeri-
cally) minimizing the variational free energies, and the
phase boundaries can be determined accordingly; see
Fig. 3. Except for the HB-P transition for ~M<�7=3
within MF theory all phase transitions are discontinuous.
The HB-P transition has already been studied in the context
of N2 absorbates on graphite. A continuous anisotropic
planar rotor model analogous to our discrete version for
K � 0 yielded similar results within both MF and MC
descriptions [21,22].

In our case, the MF description is not expected to predict
the correct order of the transition, as can be inferred by
specializing to the Potts model (M � 0). Nevertheless, the
MF results should constitute reasonable approximations
for the actual phase behavior. In order to gain further
insight we have performed extensive MC simulations of
the colloidal dimer Hamiltonian, Eq. (3), using a standard
Metropolis procedure. The observables have been aver-
aged over 
 5000 statistically independent configurations
after the system has been equilibrated. Every 1000 MC
cycles a new configuration contributing to the averages is
considered. Simulations have been performed on several
system sizes, N � L� L and L � 12; 36; 54; 108, and
periodic boundary conditions have been employed to
FIG. 3. Phase diagram for dimers. Solid and dashed lines
represent discontinuous and continuous MF transitions. Dots
and crosses denote the continuous and discontinuous transition
points as obtained by MC simulations; the two encircled symbols
indicate the pure Potts transitions. The nature of the HB-P
transition for ~M<�4 is not clear, which is indicated by a
dot-cross symbol for the critical point. Dotted lines represent
extrapolations of the Potts model critical point; see text.
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mimic bulklike conditions [17]. The order parameter char-
acterizing the various phases has been chosen in analogy
with the Potts model, either defined on the whole system or
suitable sublattices,

S �
1

N

�
N� �

1

2

X
���

N�

�
: (4)

Here, N� is the number of dimers in state �; in particular,
N� corresponds to majority orientation, and N � ��N� is
the total number of the dimers on the whole (sub)lattice.
We have performed temperature sweeps for K > 0 and
K < 0 with a number of choices for ~M starting from the
ordered structures. We have monitored the average order
parameter and energy, as well as their respective variance.
The transition temperatures corresponding to melting of
the ordered structures have been determined by extrapolat-
ing the location of the maxima of the heat capacity and
susceptibility to the infinite system size. In order to decide
whether the respective phase transition is strongly discon-
tinuous or compatible with a continuous–weakly discon-
tinuous transition scenario, we have evaluated Binder’s
cumulant and respective probability distributions for the
order parameter and energy [17]; both scenarios are exem-
plified in Fig. 4.

Figure 3 exhibits the phase diagram for the colloidal
dimer Hamiltonian; boundaries resulting from both MF
description and MC simulations are included in the figure.
The variational MF free energy reproduces the topology of
the phase diagram, although some of the transitions be-
come continuous by fluctuation effects. Quantitatively, MF
overestimates the transition temperatures with respect to
simulation results by a factor of order unity, a feature
already familiar from the Ising model [19]. Interestingly,
the discontinuous HB-P transition appears to saturate for
large negative values of ~M in strong contrast to the corre-
sponding MF result [23]. For colloidal systems the regime
corresponding to K > 0 and ~M< 0 should be experimen-
tally accessible. A stringent test of our theory would be to
experimentally verify the predicted HB–P phase transition.
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FIG. 4. Order parameter S as a function of the reduced tem-
perature for the two FM-P transitions. Left: Potts-like continuous
transition for K;M > 0. Right: the ~M-term driven first order
transition for K < 0, ~M> 5. Inset: probability distributions of
states with respect to the energy per dimer, u � U=N, below,
above, and at the transition temperature.
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Fluctuation effects reduce the critical temperature of the
Potts model by a known factor [20]. The variational MF
free energy of the colloidal dimer Hamiltonian for P-FM
and AM structures is equivalent to the MF Potts model,
provided that the Potts exchange energy is replaced by the
effective coupling Keff . This analogy suggests an empirical
improvement of the MF result for these transitions by
rescaling the transition temperatures with the same respec-
tive correction factors. The result of this procedure is
shown as dashed lines in Fig. 3. For K > 0 there is ex-
cellent agreement with simulation results for temperatures
~T > 1. For K < 0 the mapping gives an overall quantitative
improvement of the phase diagram. In particular, for M �
0 the well known Potts solution is recovered.

We close with reporting our main results for trimers on a
triangular lattice. Because of the symmetry of the lattice,
trimers can be in only one of two orientational states,
represented by Ising spins � � �. Hence the four config-
urational states for trimer pairs contribute one out of the
three possible interaction energies,

In contrast to the Ising model, the interaction energies for
the �	�� and ��	� configurations are different. The
relation between the model parameters and the control
parameters of the experiments are similar as for dimers.
In particular, an increase of the potential strength again
leads to a reduction of the interaction energies between
trimers and thus favors orientational melting.

The central questions now are how many relevant en-
ergies determine the phase behavior and what is the effec-
tive statistical model. Similar considerations as for dimers
would suggest that there are two relevant energy scales
resulting in a two-dimensional phase diagram. Actually, by
a simple rearrangement the Hamiltonian can be cast in the
form of an Ising model with a single excitation energy
�E � E1 	 E3 � 2E2 [17] corresponding to single trimer
flips, irrespective of the configurations of the neighboring
trimers. Depending on the sign of �E, the ground state is
either ‘‘ferromagnetic’’ with parallel �		� [or equiva-
lently ����] configurations or ‘‘antiferromagnetic’’ with
an alternating arrangement of ��	� and �	�� configura-
tions. It is interesting to note that it is the relative orienta-
tion of trimer pairs and not the trimers themselves that
determine the ground state.

For the remainder of the analysis known exact results of
the 2D Ising model [19] can now be employed to obtain the
phase diagram. Considering the parameters of the experi-
mental setup in Ref. [13], we can identify the critical laser
intensity, V0 � 78kBT [17], above which the orientational
order of trimers is lost. This result is consistent with
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experimental observations, where the colloidal trimer sys-
tem was found to be orientationally ordered for V0 �
60kBT but disordered for V0 � 110kBT. It would be inter-
esting to extend the experimental analysis to find the actual
transition point and compare it with our prediction.
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