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Multiscaling at Point J: Jamming is a Critical Phenomenon
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We analyze the jamming transition that occurs as a function of increasing packing density in a
disordered two-dimensional assembly of disks at zero temperature for ‘‘Point J’’ of the recently proposed
jamming phase diagram. We measure the total number of moving disks and the transverse length of the
moving region, and find a power law divergence as the packing density increases toward a critical
jamming density. This provides evidence that the T � 0 jamming transition as a function of packing
density is a second order phase transition. Additionally, we find evidence for multiscaling, indicating the
importance of long tails in the velocity fluctuations.
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There has been a surge of activity in jamming phe-
nomena for T � 0 systems such as granular materials,
foams, and colloids, where jamming is defined as the onset
of a nonvanishing yield stress in a disordered state [1,2].
Liu and Nagel proposed a jamming phase diagram con-
taining three axes: temperature T, the inverse packing
fraction 1=�, and shear � [1]. The system is jammed
within a three-dimensional dome; above the jamming tran-
sition, the system behaves as a rigid solid. Recently
O’Hern et al. [3] studied the area of the jamming phase
diagram at T � � � 0 as a function of packing density �,
and showed that a well-defined sharp jamming transition
appears at ‘‘Point J.’’ Elsewhere on the jamming phase
diagram, the boundary between jammed and unjammed
states is not sharp since its definition is sensitive to the
experimental time scale. It was noted in Ref. [3] that,
although Point J does not exist for liquids, the behavior
near Point J could be relevant to the physics near the glass
transition. A key question is whether Point J is a true
continuous phase transition with a diverging spatial corre-
lation length. Since the physics at Point J is nonthermal,
any continuous phase transition behavior could be domi-
nated by rare fluctuations. If this is the case, simple scaling
close to the critical density may not occur even if there is
an underlying phase transition.

Here, we consider the motion of a single disk driven
through an arrangement of disks as the jamming transition
is approached, a system which, as suggested in Ref. [3],
should provide a direct test of the nature of the jamming
transition. The reader is invited to try the following experi-
ment: place a large collection of coins flat on a desk, so that
they are almost touching. Then, push one coin and observe
what other coins move. At low packing fractions �, the
driven disk or coin occasionally contacts other disks, which
can in turn contact still other disks, but the total number of
disks moving is small. At a certain density � � �c, how-
ever, the entire system must move simultaneously as a unit,
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and jams. Force chains can be observed emanating from
the driven disk [4].

In these jamming problems, the tail of the particle
velocity distribution P�v� at small velocities controls the
behavior of the system, since once the system enters a
jammed state, with everything stopped in the thermody-
namic limit, it can never exit the jammed state. The best
method for characterizing the tail of P�v� is via multi-
scaling, which we employ in this Letter. For fixed driving
force, a small v implies that a large number of other
particles are dragged with the driven particle, but we can
also characterize the number of particles moved by the
driven particle by examining the force transmission. We
will see that this measurement provides direct evidence for
a diverging length scale. Our data also suggest that the
jamming transition for very large systems coincides with
the random close packed density.

We simulate a binary mixture of two-dimensional disks
with stiff spring repulsive interactions of radius rA and rB
at T � 0 (see Fig. 1). For all the densities we consider here,
we find �1% overlap in the radii as the disks interact,
indicating that the spring constant is sufficiently large to
provide a good approximation to hard-core disks. The
bimodal disk distribution, with a size ratio of 1:4:1, is
chosen to create a disordered arrangement and avoid for-
mation of a regular lattice. We also performed simulations
with a size ratio of 1:7:1 with substantially identical results.
We employ overdamped dynamics such that the velocity of
each disk is proportional to the force acting on it. The
equation of motion for the disks is

vi �
X
i�j

k�jrijj � reff�
rij
jrijj

� fd: (1)

Here k � 200 is the strength of the stiff restoring spring
[5], rij � ri � rj, and for all but one of the disks, the
external driving force fd � 0. The single driven disk (large
dot in Fig. 1) has fd � 0:1. Disks only interact if they are
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FIG. 2. Time series of velocity for L � 60 and � � (a) 0.656,
(b) 0.747, and (c) 0.837.
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FIG. 1. Sample geometry for L � 60 and (a) � � 0:656,
(b) � � 0:811, (c) � � 0:837. Large black dot: the probe disk
(size exaggerated for clarity); gray dots: moving disks; small
dots: nonmoving disks.
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separated by a distance smaller than the sum of their radii,
jrijj< reff � r�i� � r�j�, where r�i� equals either rA or rB,
depending on the given particle. We tested several different
values of fd and chose the value small enough to minimize
overlap as mentioned above. We use periodic boundary
conditions with a range of linear system sizes L � 24 to
60. For L � 60, the system contains N � 2600 back-
ground disks at a density of � � 0:8395.

We prepare the system by randomly dropping nonover-
lapping disks up to � � 0:6. To reach higher densities, we
add disks at randomly selected interstitial locations, reduce
the radii of all disks, and then increase the radii back to the
initial values while allowing the system to evolve under a
small temperature. This produces nonoverlapping configu-
rations at densities up to �c. To reach the maximum
possible density,

���
3

p
�=6 � 0:907, requires phase separat-

ing the system. At the significantly lower �c � 0:839 we
find no phase separation. Since the system is not jammed
below �c, we believe that we successfully uniformly
sampled all available states, and that phase separation
does not occur until some �sep >�c.

To study the velocity curve, we drive a single large disk
along a 45
 angle over a distance of

���
2

p
L=5. The time

required for this motion is much longer than the time scale
of any brief initial transients in the velocity. We measure
the effective velocity of the driven disk over the length of
the simulation. For computational reasons, it is not possible
to simulate a disk moving at an arbitrarily slow velocity
through the system. In these cases, we declared that the
system had jammed; this definition agreed well with the
critical �c � 0:839 given by curve fitting below.

In Fig. 1 we show snapshots of simulation results for
different densities, with disks counted as moving and
08800
shaded in gray if they were connected via a force contact
to the driven disk. At the lowest � � 0:656, in Fig. 1(a),
the driven disk moves easily and interacts with only a few
neighbors. In Fig. 1(b) for � � 0:811, close to jamming, a
larger portion of the disks are moving, while in Fig. 1(c) at
� � 0:837, the system is sufficiently close to �c that the
entire (finite-size) sample is moving.

Figure 2 shows example time series for the velocity v
parallel to the applied drive at � � 0:656, 0.747, and
0.837. Not only does the average velocity decrease as �
increases, but the time series becomes more intermittent.
At � � 0:837, the velocity is usually very small, but there
are occasional bursts of much higher velocity.

We emphasize that for �<�c the threshold force re-
quired to move the driven particle vanishes. Instead, v is
proportional to the drive fd at any moment of time. This
follows from dimensional grounds, since for a hard-core
system, there is no physical parameter with units of force.
This is very different from the behavior shown in a recent
numerical study of single probe particles driven through a
system with softer, long-range forces [6], where there is a
nonvanishing, but finite, depinning force at all densities
due to the long-range nature of the force.

Distribution of velocities.—Newton’s third law, com-
bined with Eq. (1), leads to the result that �ivi � fd.
Thus, if the driven particle is not in contact with any other
particles, it moves at v � fd=. If there are a total of n
particles moving together, including the driven particle,
then they each move at v � fd=n. For �>�c, all N
particles in the system move together, and v is vanishingly
small in the thermodynamic limit. For �<�c, the number
of particles moving is finite in the thermodynamic limit and
diverges as � approaches �c.

One measurement which may show scaling as � ap-
proaches �c is the average velocity v of the driven disk [7].
However, v is a random, time-dependent variable, and for
any density �<�c there is a nonvanishing probability of
observing any given, arbitrarily small v. Since the other
disks are distributed randomly, there is still some proba-
bility that in any local region the density will exceed �c [8]
1-2
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FIG. 3. Plot of M�q;��1=q versus � for q � �1, 1, 2, and 4
(from bottom to top). The curves with larger q are noisier. Inset:
M�q;��1=q versus �c �� on a log-log scale for q �
�3;�1; 1; 3. A curve fit shows the power law scaling.
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FIG. 4. (a) Plot of ��q�=q against q. The q dependence of
��q�=q shows the existence of multiscaling in this system.
(b) Plot of M�1� (crosses) and M�3�1=3 (circles) against
M��1��1.
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(this argument is inspired by Lifshitz tails). If this region
encloses n disks, the probability of finding such a region is
exponentially small in n, but it is nonvanishing. When the
driven disk hits such a region, it behaves as if it jams, and v
slows to a value of order 1=n until the disk either escapes
the region or pushes other disks into neighboring regions of
lower density. Thus, with exponentially small probability
in n, v�O�1=n�. Once the particle slows, however, it
takes a long time for it to leave the region. Thus, one
expects to see an intermittent v.

To measure the intermittency, we use multifractal [9]
scaling. For a given �, let p�v�dv be the probability of
measuring a given v at a single instant in time. Define the
qth inverse moment by M�q� �

R
dvp�v�v�q as the time

average of the qth power of the inverse velocity. We then
define a set of multifractal exponents ��q� by

M�q� �
Z
dvp�v�v�q / ��c ������q�: (2)

If v were constant throughout the simulation for a given �,
we would have M�q�1=q � M�1�. If instead v had relative
fluctuations of order unity about some characteristic ve-
locity, v0���, then M�q�1=q would not equal M�1� in gen-
eral, but ��q�=q would still be independent of q. We will
instead find that ��q�=q depends on q. This implies that v
does not simply fluctuate about a single v0, but is instead
much more intermittent, with the particle sometimes get-
ting stuck for a long time at a slow velocity, then traveling
much more rapidly.

We compute the moments M and extract the exponents
��q� by fitting the moments to the form c��c ������q�.
The value of �c determined from these fits is independent
of q to high accuracy for q  �2, and thus we can fix
�c � 0:839 as the onset of jamming. In Fig. 3 we plot
M�q;��1=q versus � for L � 60 and various q, averaged
over three realizations of the system. In the inset we show
the log-log plot of the curves in the main panel with solid
lines indicating power law fits. The curves not only fail to
overlap, but also have different slopes, indicating the pres-
ence of multiscaling. In Fig. 4(a), we plot ��q�=q versus q.
For large positive and negative q, the plot asymptotes. The
asymptote at large positive q reflects the scaling of the
typical (disregarding exponentially rare possibilities dis-
cussed above) slowest velocity of the system which goes to
zero as ����c�

limq!1��q�=q. Similarly, the asymptote at
negative q reflects the typical largest velocity. Since
limq!�1��q�=q is very close to zero, the typical largest
velocity is largely independent of �, as seen in Fig. 2. In
fact, it is likely that at sufficiently negative q the exponent
��q�=q becomes zero.

The error in ��q� due to statistical fluctuations is negli-
gible. If we compare the ��q� obtained by curve fitting
M�q;�� averaged over all realizations to ��q� obtained by
using only a single realization, the difference in exponents
is of order 0.001 to 0.002. Instead, the major source of error
is finite-size effects. The straight lines in the inset to Fig. 3
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are based on fitting over a certain range of �. For � closer
to �c than the endpoint of the fitting lines, the statistical
noise in the data increases significantly and some of the
realizations jam while others do not. Thus, for finite N the
jamming threshold is not well defined, and these � are so
close to �c that finite-size effects may be important. The
error bars in Fig. 4 are based on this consideration of finite-
size effects. The low end of the error bars corresponds to
the ��q� obtained by fitting only over the range shown in
the inset to Fig. 3, while the high end corresponds to
including all �<�c. The low end tends to underestimate
the difference in ��q�=q for different q. ��q�=q is clearly q
dependent since the difference in ��q�=q between q � �1
and q � 2, for example, is definitely outside the error bars.
In Fig. 4(b) we plot M�q�1=q as a function of M��1��1 for
q � 1; 3 over the same range as in Fig. 3 to illustrate that
the data obey extended self-similarity [10]. The slopes on
the log-log plot are 1:25� 0:15 and 1:45� 0:2, respec-
tively; as expected, this is within error bars of the ratio of
the exponents ���1�=���1� and ����3�=3�=���1�. It is
difficult to establish that these slopes are different from
each other, but the slopes are definitely different from
unity, which already indicates multiscaling. The fact that
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FIG. 5. Plot of nmoving against �. Solid line: L � 60. Dashed
line: L � 48. Dotted line: a power law fit to the L � 60 curve.
Left inset: The L � 60 curve and the fit against �c ��, show-
ing scaling. Right inset: finite-size scaling.

PRL 95, 088001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
19 AUGUST 2005
���1� is less than 1 makes the size of the scaling regime
seem small, since a wide scaling range in � leads to only a
small range in ���1�; however, the curve fit is very good
over the available range.

Figure 1 shows that as the jamming transition is ap-
proached, the number of moving disks increases and there
is a diverging length scale as the jamming is approached. In
order to quantify this, we show in Fig. 5 the number of
moving disks nmoving vs � for systems of linear size L �

48 and L � 60. Here a clear divergence appears as the
critical density is approached. The divergence is cut off
when nmoving equals the total number of disks. We have
also considered smaller systems for different parameters of
drive and disk radii and again observe a divergence; how-
ever, these smaller systems give a much lower resolution
and hence a larger error on the estimated exponent. In
Fig. 5 we fit a power law to the largest system with ��c �
���, where � is between 1.2 and 1.46. We also measured
the sum over moving disks of the squared distance between
the driven disk and the moving disk, a quantity nmovingl2,
and find that this number diverges as ��c �����, with �
between 2.35 and 2.6. The number of moving disks cannot
directly be compared to the velocity v of the driven disk, as
the driven disk can push other disks normal to the drive so
that nmoving may be much larger than 1=v. We obtained the
exponents � and � by a time average of the number of
moving disks, and did not perform a multiscaling calcu-
lation, though we can extract a length from a simple scaling
analysis. If the moving disks form a cluster with dimension
d and length scale  diverging as  / ��c ����!, then
� � !d and � � !�d� 2�. Given the values of �, �, and
our own qualitative observations, we find d � 2, so that !
is between 0.6 and 0.7. This provides a direct measurement
of the diverging length scale, in reasonable agreement with
the finite-size scaling result [3] ! � 0:71� 0:12. We note
that Fig. 5 in our case is completely consistent with finite-
size scaling as shown in the right inset. Scale the y axis by
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L2 (the scaling for the total number of particles in the
system), and scale �c �� by L�2=�. Then, the curves
for different L automatically collapse within the scaling
region, and since the divergence is cut off at nmoving / L2

for all L, these curves also collapse close to�c. Finally, our
�c � 0:839 is very close to the critical packing density
found in [3].

Conclusion.—We have studied a system of a T � 0,
zero shear 2D disordered assembly of disks at densities
below and up to Point J in the recently proposed jamming
phase diagram. A single probe disk is pushed with a
constant drive through the other disks. Upon increasing
the packing density, we find a jamming transition associ-
ated with a power law divergence in the number of moving
disks and a diverging spatial correlation length, indicating
that Point J is a true continuous phase transition. In addi-
tion, we show that the tails of the disk velocity distribution
play an important role in this transition, since due to the
nonthermal nature of the system, once the particle stops
moving, it cannot restart. Using the multifractal moments
��q�, we chart the tails and show that the ��q� do not
depend linearly on q; thus, the system exhibits multiscal-
ing. We also find evidence for a diverging correlation
length of the force contacts as the jamming transition is
approached from below. Our results show that there is an
underlying second order nonthermal phase transition at the
jamming transition. We suggest that experimental work
should consider both the velocity time series and the
number of moving particles in the surrounding media,
and should test for multiscaling behavior as the jamming
transition is approached. Particular experiments would in-
clude driving a single disk on a flat surface through a
disordered assembly of other disks for increasing density,
or driving individual colloids through glassy assemblies of
other colloids.
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