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Spin Waves in Paramagnetic bcc Iron: Spin Dynamics Simulations
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Large scale computer simulations are used to elucidate a long-standing controversy regarding the
existence, or otherwise, of spin waves in paramagnetic bcc iron. Spin dynamics simulations of the
dynamic structure factor of a Heisenberg model of Fe with first principles interactions reveal that well
defined peaks persist far above Curie temperature Tc. At large wave vectors these peaks can be ascribed to
propagating spin waves; at small wave vectors the peaks correspond to overdamped spin waves.
Paradoxically, spin wave excitations exist despite only limited magnetic short-range order at and above Tc.
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For over three decades, the nature of magnetic excita-
tions in ferromagnetic materials above the Curie tempera-
ture Tc has been a matter of controversy. Early neutron
scattering experiments on iron suggested that spin waves
were renormalized to zero at Tc [1]; however, using un-
polarized neutron scattering techniques, Lynn at ORNL
reported [2] that spin waves in iron persisted as excitations
up to the highest temperature measured (1:4Tc), and no
further renormalization of the dispersion relation was ob-
served above Tc.

Experimentally, this was challenged primarily by
Shirane and collaborators at BNL [3]. Using polarized
neutrons, they reported that spin wave modes were not
present above Tc and suggested that the ORNL group
needed polarized neutrons to subtract the background scat-
tering properly. Utilizing full polarization analysis tech-
niques, the ORNL group subsequently confirmed their
earlier work and, in addition, based on data analysis, they
concluded that their resolution was much better [4].
Moreover, angle-resolved photoemission studies [5,6] sug-
gested the existence of magnetic short-range order (SRO)
in paramagnetic iron and that this could give rise to prop-
agating modes. Theoretically, SRO of various length scales
was postulated to exist far above Tc [7–9]. Contrarily, it
was also suggested that above Tc, all thermal excitations
are dissipative [10,11]. Analytical calculations for a
Heisenberg model of iron [12] concluded that the model
does not lead to propagating spin waves above Tc. In
addition, Shastry [13] performed spin dynamics (SD)
simulations of a nearest neighbor Heisenberg model of
paramagnetic iron with 8192 spins and showed some plots
of dynamic structure factor S�q; !� with a shoulder at
nonzero ! for some q, which was not attributed to prop-
agating modes.

With new algorithmic and computational capabilities,
qualitatively more accurate SD simulations can now be
performed. In particular, it can follow many more spins for
much longer integration time. We use these techniques and
a model designed specifically to emulate bcc iron and have
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been able to unequivocally identify propagating spin wave
modes in the paramagnetic state, lending substantial sup-
port to Lynn’s [2] experimental findings. Interestingly, spin
waves are found despite only limited magnetic SRO.

To describe the high temperature dynamics, we use a
classical Heisenberg model H � ��r�r0Jr;r0Sr � Sr0 , for
which the exchange interactions, Jr;r0 , are obtained from
first principles electronic structure calculations. For Fe this
is a reasonable approximation since the size of the mag-
netic moments associated with individual Fe sites are only
weakly dependent on the magnetic state [14], and by
including interactions up to fourth nearest neighbors it is
possible to obtain a reasonably good Tc.

Computer simulations using SD techniques to study the
dynamic properties of Heisenberg ferromagnets [15] and
antiferromagnets [16] have been quite effective, and the
direct comparison of RbMnF3 SD simulations with experi-
ments was especially satisfying [16]. We adopt these tech-
niques and use L� L� L bcc lattices with periodic
boundary conditions and L as large as 64. At each lattice
site, there is a three-dimensional classical spin of unit
length (we absorb spin moments into the definition of the
interaction parameters), and each spin has a total of 50
interacting neighbors. We use interaction parameters for
the T � 0 ferromagnetic state of bcc Fe calculated using
the standard formulation [17] and the layer Korringa-
Kohn-Rostoker (KKR) method [18]: J1 � 18:2 meV, J2 �
10:3 meV, J3 � �0:813 meV, and J4 � �1:20 meV.

In our simulations, a hybrid Monte Carlo method is used
to study the static properties and to generate equilibrium
configurations as initial states for integrating the coupled
equations of motion of SD [19]. At Tc and for L � 32, the
measured nonlinear relaxation time in the equilibrating
process and the linear relaxation time between equilibrated
states for the total energy and for the magnetization [20]
are both smaller than 500 hybrid steps per spin. We discard
5000 hybrid steps (for equilibration) and use every 5000th
hybrid step’s state as an initial state. For the Ji’s used here,
Tc � 919�1� K, which is slightly smaller than the experi-
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mental Texpc � 1043 K. The equilibrium magnetization
jmj 	 �1=N�j�rSrj 
 �1� T=Tc�

1=3 in the vicinity of Tc,
and this is in agreement with experiments.

The SD equations of motion are

dSr

dt
� Heff � Sr; (1)

where Heff 	 �2�r0Jr;r0Sr0 is an effective field at site r
due to its interacting neighbors. The integration determines
the time dependence of each spin and is carried out using
an algorithm based on second-order Suzuki-Trotter decom-
positions of exponential operators [21]. Because we con-
sider four shells of neighbors, the lattice is decomposed
into 16 sublattices. This algorithm allows time steps as
large as �t � 0:05 (in units of t0 � J�11 ). Typically, the
integration is carried out to tmax � 1000t0 
 50 ps.

The space- and time-displaced spin-spin correlation
function Ck�r� r0; t� and the related dynamical structure
factor, Sk�q; !�, are fundamental in the study of spin
dynamics [22] and are defined as

Ck�r� r0; t� � hSkr�t�Skr0 �0�i � hSkr�t�ihSkr0 �0�i; (2)

where k � x, y, or z and the angle brackets h� � �i denote the
ensemble average, and

Sk�q; !� �
X
r;r0

eiq��r�r0�
Z 1

�1
ei!tCk�r� r0; t�

dt�������
2�

p
N
;

(3)

where q and ! are momentum and energy (E / !) trans-
fer, respectively. It is Sk�q; !� that was probed in the
neutron scattering experiments discussed earlier.

By applying the ‘‘on the fly’’ method [15], we can
calculate Sk�q; !� without storing a huge amount of data
associated with each spin configuration. For finite L, only
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FIG. 1. Calculated energy dependence of S�q; !� at q �
�=a�1; 0; 0� and for T � 0:95Tc (700 runs), 1:0Tc (2000 runs),
1:1Tc (2240 runs), and 1:2Tc (2240 runs) for L � 32. Error bars
are obtained by averaging over every 50 data points using signal
averaging techniques and, if not seen, are smaller than symbols.
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these q values are accessible: q � 2�nq=�La� with nq �
�1;�2; . . . ;�L for the �q; 0; 0� and �q; q; q� directions
and nq � �1;�2; . . . ;�L=2 for the �q; q; 0�. (a is the
lattice constant.) For T � Tc, the ensemble average in
Eq. (2) was performed using at least 2000 starting configu-
rations. We average Sk�q; !� over equivalent directions,
and this averaged structure factor is denoted as S�q; !�.

In Fig. 1 we show the frequency dependence of S�q; !�
obtained for four different temperatures around Tc. These
so-called constant-q scans are for q � �=a�1; 0; 0� (jqj �
1:09 �A�1), which is halfway to the Brillouin zone bound-
ary. At 0:95Tc, S�q; !� already has a three-peak structure:
one weak central peak at zero energy and two symmetric
spin wave peaks (we show data only for ! � 0 since the
structure factor is symmetric about ! � 0). Note that the
spin wave peaks are already quite wide. As T goes to Tc
and above, the central peak becomes more pronounced. In
addition, the spin wave peaks shift to lower energies,
broaden further and become less obvious; however, they
still persist. This three-peak structure at high temperatures
is in contrast to the two-peak spin wave structure found at
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FIG. 2. Fits to S�q; !� at T � 1:1Tc for two jqj points along
the �q; q; 0� direction for L � 64. (a) jqj � 0:67 �A�1 fit to
Eq. (4), with Ic � 16:1, !c � 56:6 meV, I0 � 8:56, !0 �
32:4 meV, and !1 � 34:2 meV; (b) jqj � 1:06 �A�1 fit to
Eq. (5) with Ic � 3:65, !c � 163:4 meV, I0 � 1:60, !0 �
129:9 meV, and !1 � 63:9 meV. Signal average techniques
are used in plotting.
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low temperatures. In the neutron scattering from
54Fe�12%Si� experiments [4], Mook and Lynn also noticed
a central peak, but could not decide whether it was intrinsic
to pure iron or a result of alloying of silicon.

In general, constant-q scans are isotropic in the �q; 0; 0�,
�q; q; 0�, and �q; q; q� directions. For small jqj, there is only
a central peak and the three-peak structure develops only
for larger jqj. We fit the three peaks in S�q; !� using
different fitting functions and found the best results with
either a Gaussian central peak plus two Lorentzian peaks at
�!0,

S�q; !� � G L  L�; (4)

or a Gaussian central peak plus two additional Gaussian
peaks at �!0,

S�q; !� � GG G�; (5)

where G � Ic exp��!2=!2c�, L� � I0!21=��!�!0�2 
!21�, and G� � I0 exp�� �!�!0�2=!21�. For moderate
jqj the results are fit best with Eq. (4), while Eq. (5) works
better at larger jqj. In Fig. 2 we show, for T � 1:1Tc, the
results of fitting constant-q scans at jqj � 0:67 �A�1 and
jqj � 1:06 �A�1 in the �q; q; 0� direction. The jqj �
0:67 �A�1 result fits well to Eq. (4) and has !1=!0 > 1;
i.e., the excitation lifetime is shorter than its period and
thus it cannot be regarded as a spin wave excitation. At
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FIG. 3. Comparison of dispersion curves obtained in our simu-
lations (sim) with Lynn’s experimental (exp) (Ref. [2]) results for
the �q; q; 0� direction. Open symbols indicate excitations with
mixed nature and are not due to spin waves (NSW).

08720
jqj � 1:06 �A�1, the structure factor has much weaker
intensity and fits best to Eq. (5) with a ratio !1=!0 < 1,
which means the excitation is propagating. This is illus-
trative of the general conclusion that the propagating na-
ture of the excitation modes is most pronounced at larger
jqj.

Figure 3 shows the dispersion relations obtained by
plotting the peak positions, !0, determined from the fits
to S�q; !� along the �q; q; 0� direction with L � 32.
Calculated dispersion curves are shown at several tempera-
tures in the ferromagnetic and paramagnetic phases to-
gether with the experimental results of Lynn [2]. To
estimate errors, we fitted each constant-q scan several
times by cutting off the tail at slightly different !max to
get an average !0; these error bars are found to be no larger
than symbols. In this figure, filled symbols indicate modes
that are clearly propagating (!1=!0 < 1) while open sym-
bols indicate that, even though there are peaks at !0 � 0,
the peaks have widths !1 >!0. The calculated result for
T � 0:3Tc is very close to that from the experiments and
propagating modes exist for very small jqj. For T � Tc,
our curves lie below the experiments and soften with
increasing temperatures, a property not seen in the experi-
ments. One possibility deserving of further study is that our
use of temperature and configuration independent ex-
change interactions, in particular, those appropriate to the
T � 0 ferromagnetic state, breaks down at high tempera-
tures when the spin moments are highly noncollinear.

In our simulations we have equal access to constant-q
scans and constant-E scans; however, this is not the case in
neutron scattering experiments. Because the dispersion
curves of Fe are generally very steep, experimentalists
usually perform constant-E scans. In Fig. 4 we show
constant-E scans for several E values at T � 1:1Tc based
on simulations. Clearly, the constant-E scans have two
peaks (symmetric about jqj � 0) that become smaller
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FIG. 4. T � 1:1Tc constant-E scans along the �q; q; 0� direc-
tion for E � 41:1, 54.8, 68.5, and 96.0 meV with L � 40.
Brillouin zone boundary qzb � 1:55 �A
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and wider and shift to higher jqj as E increases. Peaks in
constant-E scans strongly suggest that SRO persists above
Tc [7].

The degree of magnetic SRO can be obtained directly
from the behavior of static correlation function Ck�r�
r0; 0� [i.e., Eq. (2) with t � 0] by Monte Carlo simulations
alone. For T � 1:1Tc we find a correlation length of ap-
proximately 2a ( 
 6 neighbor shells), indicative of only
limited SRO. Thus, in general, extensive SRO is not re-
quired to support spin waves. Moreover, inspection of
Fig. 3 for T � 1:1Tc shows that the point q * 0:77 �A�1,
at which these peaks first correspond to propagating
modes, is when their wavelength (�
 2a) first becomes
the order of the static correlation length.

Finite size effects must also be considered in our simu-
lations. At T � 1:1Tc in the �1; 0; 0� direction, for L � 8,
the effects are still visible for jqj � qzb=2 ; for L � 16, no
such effects are observable for jqj � qzb=8. All our results
are presented for L � 32. Moreover, small jqj values are
associated with long wavelength excitations, and spin
waves in iron at high temperatures have wavelengths
away from the long wavelength region; therefore, auto-
matically, the finite sizes have little effects.

In summary, our SD simulations clearly point to the
existence of spin waves in paramagnetic bcc Fe and sup-
port the original conclusions of Lynn. Their signature is
seen as spin wave peaks in dynamical structure factor in
constant-q and constant-E scans. Detailed analysis of the
constant-q scans shows that the propagating nature of these
excitations is clearest at large jqj, in agreement with ex-
periment. This is also consistent with the requirement that
their wavelength be the order of, or shorter than, the static
correlation length. While the inclusion of four shells of
first-principles-determined interactions into the
Heisenberg model makes our results specifically relate to
bcc Fe, we have also found spin waves in a Heisenberg
model containing only nearest neighbor interactions. In
addition to elucidating the long-standing controversy re-
garding the existence of spin waves above Tc, these simu-
lations also point to the important role that inelastic
neutron scattering studies of the paramagnetic state can
have in understanding the nature of magnetic excitations,
particularly when coupled with state-of-the-art SD
simulations.
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