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We analyze the Blume-Emery-Griffiths-Capel model with disordered interaction that displays the
inverse freezing phenomenon. The behavior of this spin-1 model in crystal field is studied throughout the
phase diagram, and the transition lines are computed using the full replica symmetry breaking ansatz. We
compare the results both with the formulation of the same model in terms of Ising spins on lattice gas,
where no reentrance takes place, and with the model with generalized spin variables recently introduced
by Schupper and Shnerb [Phys. Rev. Lett. 93, 037202 (2004)], for which the reentrance is enhanced as the
ratio between the degeneracy of full to empty sites increases. The simplest version of all these models,
known as the Ghatak-Sherrington model, turns out to hold all the general features characterizing an
inverse transition to an amorphous phase.
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In the recent past the phenomenon of ‘‘inverse melting,’’
already hypothesized by Tammann a century ago [1], has
been found experimentally in very different materials,
ranging from polymeric and colloidal compounds to
high-Tc superconductors, proteins, ultrathin films, liquid
crystals, and metallic alloys [2–5]. This kind of transition
includes, e.g., the solidification of a liquid or the trans-
formation of an amorphous solid into a crystal upon heat-
ing. The reason for this counterintuitive process is that a
phase usually at higher entropic content happens to exist in
very peculiar patterns such that its entropy is decreased
below the entropy of the phase usually considered the most
ordered one. An example taking place in the widely studied
polymer P4M1P [2] is the one of a crystal state of higher
entropy that can be transformed into a fluid phase of lower
entropy on cooling, thus allowing, e.g., the melting of a
crystal as the temperature (or pressure) is decreased.
Inverse transitions, in their most generic meaning (i.e.,
both thermodynamic or occurring by means of kinetic
arrest), have been observed between fluid and crystal
phases [3], between glass and crystal [2], and between
fluid and glass (‘‘inverse freezing’’) [4].

A reentrance in the transition line can be due to both the
existence of a liquid phase with an entropy lower than the
one of the solid and/or the fact that the liquid is more dense
than the solid (as in the water-ice transition). According to
the Clausius-Clapeyron equation, when an entropic ‘‘in-
version’’ accounts for the phase transition, the equilibrium
transition line changes slope in a point where the entropy
of the fluid phase, sl, becomes equal to the one of the solid,
ss. From this critical point a whole isoentropic line, �s �
sl � ss � 0, can be continued inside both the solid and the
liquid phases, as the thermodynamic parameters (tempera-
ture and pressure, for instance) are varied. This is a par-
ticularly interesting observation since, in the context of
glass formers, Kauzmann [6] hypothesized a transition to
an ‘‘ideal’’ glass at the temperature at which �s � 0, in
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order to avoid the paradox that an undercooled liquid might
possess less entropy than the associated crystal at the same
values of the thermodynamic parameters. From an experi-
mental point of view the Kauzmann temperature would be
the temperature of the glass transition (that is, not a true
phase transition because it is strictly kinetic in origin) in an
idealized adiabatic cooling procedure. Since the astronom-
ically long relaxation time needed to actually perform such
an experiment makes such a procedure unfeasible, the
evidence in favor of the existence of a thermodynamic
glass transition mainly comes from analytical and numeri-
cal investigations (see, e.g., Refs. [7,8]). The fact that a
�s � 0 line turns out naturally in the description of the
behavior of materials with inverse transition avoids, at least
for these substances, the Kauzmann paradox and breaks the
connection between �s � 0 extrapolation and the exis-
tence of an ideal amorphous phase [2,3].

The aim of this Letter is to study a simple mean-field
model for the inverse transition in spin glasses, heuristi-
cally representing the inverse fluid-amorphous transition.
The model we consider contains quenched randomness as a
basic ingredient. We stress, however, that such a disorder is
not necessary to induce the spin-glass transition. Truly
relevant is the frustration caused by it, i.e., the unresolvable
competition among many similar states in which the sys-
tem can find itself. The source of frustration can be of a
different nature, e.g., random impurities or geometrical
constraints. The kind of frustration can actually lead to
different amorphous phases (a glass or a spin glass). The
quenched randomness, instead, is not a discriminant factor.
Indeed, spin-glass models can be found without quenched
disorder [9] as well as structural glass models with
quenched disorder (e.g., the ‘‘discontinuous spin glasses’’
[7] sharing the physical properties of a true glass rather
than of an amorphous magnet).

We have been analyzing the Blume-Emery-Griffiths-
Capel (BEGC) model with quenched disorder using the
1-1  2005 The American Physical Society
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FIG. 1. The T-D phase diagram in absence of biquadratic
interaction. Three models with different behaviors are plotted:
r � 1=2; 1; 2. For each model three curves are represented, each
departing from the same tricritical point: the full curve on the left
is the spinodal of the PM phase, the dashed one in the middle is
the first order transition line, and the right one is the SG spinodal
line. The group of three curves on the left are for the Ising spins
on lattice gas (r � 1=2, Tc � 1=3, Dc � 0:731 05). The group of
curves in the middle represent the lines of the GS model (r � 1,
Dc � 0:962 10). The curves on the right correspond to the r � 2
model (Dc � 1:193 15). In the inset the same diagram is plotted
when K � 1 (attractive biquadratic interaction).
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full replica symmetry breaking (FRSB) scheme of compu-
tation that yields the exact stable thermodynamics. The
interested reader can find details about the computation of
the thermodynamics of this kind of model in Refs. [10,11].
The BEGC model includes the Blume-Capel [12] and the
Blume-Emery-Griffiths [13] models, when the couplings
are ferromagnetic, and the Ghatak-Sherrington (GS) model
[14], when the couplings are random variables and no
biquadratic interaction occurs (see Ref. [11] for a more
complete literature report). The model we have been ex-
tensively analyzing in the past is the one with Ising spins
(S � �1) on a lattice gas (with site occupation numbers
n � 0; 1). In that case the value associated with a single
site can be 1, 0, or �1, but zero has a double degeneracy
with respect to 1 (or �1). The original BEGC model
consists, instead, of spin-1 variables S � 1; 0;�1, with 1
(or �1) being as degenerate as 0. In their recent work
[15,16] Schupper and Shnerb introduced a generalization
to theoretically represent the phenomenon of inverse freez-
ing. They computed the phase diagram of the GS model in
the replica symmetric (RS) approximation, presenting evi-
dence that a reentrance occurs if the degeneracy of the
magnetically interacting sites (S2 � 1) is larger than the
one of the holes (S � 0). Stimulated by their work we have
been looking at the phase diagram of the random BEGC
model in terms of the variables introduced by them, but
considering the thermodynamically stable spin-glass solu-
tion obtained by means of the FRSB ansatz, instead of the
RS approximation. The aim of this work is (i) to check the
validity of the idea introduced in Ref. [15] in a nonpatho-
logical case and (ii) to determine the simplest model in
which the inverse freezing phenomenon is qualitatively
well reproduced, including the presence of latent heat.

The Hamiltonian of the model is

H �
X

ij

JijSiSj �D
XN

i�1

S2i �
K
N

X

i<j

S2i S
2
j ; (1)

where S � 1; 0;�1, D is the crystal field, and Jij are
quenched random variables (Gaussian) of mean zero and
variance 1=N. The parameter K represents the strength of
the biquadratic interaction.

We denote by k the degeneracy of the filled sites (S � 1
or S � �1) and l the degeneracy of the empty sites (S �
0). The relevant parameter is r � k=l [15]. When r � 1,
the spin-1 model is obtained. If, furthermore, K � 0, the
model is the GS one. When, otherwise, r � 1=2 and D !
� � �D, the lattice gas formulation of Ref. [17] is recov-
ered, for which no reentrance was observed [10,11].

Schupper and Shnerb introduce the idea that a larger
degeneracy of the interacting sites yields a qualitative
change of the phase diagram to develop a reentrance in
the T-D phase diagram, thus allowing for a phase transition
from the paramagnetic (PM) to the spin-glass (SG) phase
as temperature is increased. Their statement is that, if the
ratio r is large enough, the phase diagram changes so much
08720
that it displays a reentrance in the T-D plane, as they show
in the RS case [15]. This solution turns out to be unphysical
in any phase that is not the PM one [18], and the shape of
the transition line and of the SG spinodal line might then be
sensitive to the thermodynamic instability intrinsic in such
approximation. Therefore, moving to the right RSB
scheme of computation, there is no guarantee that the first
order transition and the spin-glass spinodal lines would
remain the same. On the other hand, not even the certainty
exists that the first order phase transition line between the
PM and the SG phase computed in the RS scheme has to be
displaced with respect to the PM/SG(FRSB) transition line
to develop a reentrance.

We discuss the physically stable solution for both the GS
model [14,19] (K � 0) and the model with attractive bi-
quadratic interaction [11] (K=J � 1), whose phase dia-
grams are plotted in Fig. 1, and we compare it with the
RS results (see Fig. 2). We study the behavior of the phase
diagram for (a) the lattice gas case (r � 1=2), for which no
inverse transition occurs anywhere in the parameter space;
(b) the spin-1 case (r � 1), where the first order transition
line displays a reentrance soon below the tricritical tem-
perature; (c) the generalized cases as r > 1; in particular,
we plot the results of the model with variables taking
values S � f1; 1; 0;�1;�1g for which the reentrance takes
place above the tricritical point, along the second order
phase transition line.

Having a model with variables displaying a relative
degeneracy r (and D � Dr), in order to describe the par-
1-2
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FIG. 3. The free energy Fpm and Ffrsb
sg versus the crystal field D

at T � 0:23 in the GS model (K � 0). The left side vertical line
is at the spinodal point of the PM phase, the right one at the
spinodal point of the SG phase. The first order transition occurs
at D1 � 0:9344. In the inset �F � Ffrsb

sg � Frs
sg is displayed. At

this temperature the two functions merge very near to the
tricritical point (right side vertical line).
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FIG. 2. T-D phase diagrams at K � 0 of the Ising spin glass on
lattice gas (left), of the spin-1 model (center), and of the random
BEGC model with r � 2 (right). Both the RS and the FRSB
solution (the latter with error bars) are plotted. In the first case no
reentrance takes place, disregarding the approximation. A reen-
trance occurs, instead, below the tricritical point in the spin-1
model along the first order transition line, and a second reen-
trance seems to be there for T < 0:03. In the model with r � 2
the reentrance occurs above the tricritical point.
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tition function of another model whose variables have
degeneracy r0 it is enough to vary the crystal field as Dr0 �
T logr0 � Dr � T logr. This does not hold, however, for
the state functions obtained deriving the thermodynamic
potential with respect to the temperature (e.g., entropy and
internal energy) that will, instead, receive contributions
from additional terms. Identifying D1=2 	 ��, one can
recover the case of magnetic spins on a lattice gas of
chemical potential � [10,17].

The analysis leads us to the conclusion that the transition
lines are not very much dependent on the ansatz used to
compute the quenched average of the free energy. Actually,
for not extremely low T, the first order transition lines
yielded by the RS and the FRSB ansatz coincide down to
the precision of our numerical evaluation of the FRSB
antiparabolic Parisi equation [20] (see Fig. 2). For what
concerns the spinodal lines, the RS ones are shifted by a
small amount inside the pure PM phase. In order to clarify
this point, the behavior of the free energy vs D at fixed
temperature (T � 0:23) is displayed in Fig. 3 for the spin-1
model in the absence of biquadratic interaction. In the inset
the difference between the FRSB and the RS free energies
(�F 	 Ffrsb

sg � Frs
sg) is plotted. In the coexistence region we

have a subregion where the stable phase is PM (right-hand
side of Fig. 3), i.e., Fpm <Ffrsb

sg , and a complementary
subregion where Ffrsb

sg <Fpm. The free energy of the stable
spin-glass phase is, of course, the FRSB one. In the SG
phase any approximation of this free energy yielded by
means of a finite number of RSB leads to a lower value
(and an unstable phase) [20], and we can see in the inset
that Ffrsb

sg >Frs
sg. The two free energies merge around the

first order transition (compatibly with the numerical un-
certainty). At T � 0:23 in the phase coexistence region the
08720
two ansatz yield very similar values (as opposed, e.g., to
the behavior deep in the SG pure phase), so that it is not
possible to determine exactly the merging point of Frs

sg
D�

and Ffrsb
sg 
D� (see Fig. 2). One can infer, however, that it

remains above D1
T�.
We show the D-T phase diagrams for K � 0 and K � 1

in Fig. 1 and inset, at different values of r. The diagram of
the model with Ising spins on lattice gas is here represented
as a function of the parameter D � ��, in order to sim-
plify the comparison with the spin-1 model and the r > 1
cases. We find that the reentrance in the D-T plane is
present already in the spin-1 GS model. As a consequence,
this implies that there is no need for the intuition of
Ref. [15] in order to have a model for inverse freezing
from low temperature liquid to high temperature amor-
phous solid. This is different from the liquid-crystal inverse
transition (‘‘inverse melting’’) for the description of which
the original Blume-Capel model is not adequate and r > 1
is needed [15,16].

The slope of a first order line is given by the Clausius-
Clapeyron equation. For the BEGC model it can be written
in terms of the crystal field D (playing the role of a
chemical potential), instead of the pressure that is not
defined in our model:

dD
dT

�
spm � ssg
�pm � �sg

�
�s
��

: (2)

This formula is valid for any r. We stress that in passing
from r to r0 also the entropy shifts of a quantity � logr=r0,
in agreement with the crystal field shift given above. Going
down along the transition line, as �s changes sign the slope
becomes positive. The �s � 0 point is called a Kauzmann
locus [3].

Looking at the phase diagram in the spin-1 case, one can
observe that the RS first order phase transition line also
1-3
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FIG. 4. Entropy vs T at the crystal field value of D � 0:96 for
the GS model. T1 � 0:302. The two vertical dashed lines mark
the SG (TSG � 0:314) and PM (TPM � 0:3465) spinodal points.
In the inset s
D� is plotted at T � 0:23.
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displays a second turning as the temperature becomes
lower and lower (see Fig. 2). Such a turning is less evident
as the FRSB solution is considered, but it does not dis-
appear. The low temperature turning is not there, instead,
for r � 2. We notice also that in this last case the reen-
trance is already in the second order phase transition line
and both first and second order inverse freezing transitions
are possible. In particular, a transition with an exchange of
latent heat can occur exclusively in the inverse order. In
Fig. 4 the behavior of the entropy as a function of the
temperature is shown across an inverse transition (as a
function of the crystal field D in the inset) for the spin-1
model. The entropy of the PM phase below the first order
transition line is smaller than the entropy of the SG:
heating the system, the paramagnet becomes an amorphous
magnet (i.e., ‘‘freezes’’) acquiring latent heat from the heat
bath.

Introducing a biquadratic interaction term and varying it
from attractive to repulsive does not change the situation
much (see, e.g., inset of Fig. 1). For any value of K no
reentrance of the phase transition line occurs in the D-T
phase diagram of the lattice gas model, whereas it is
always there for the spin-1 model. The only consequence
of reducing K is that the area of the phase coexistence
region is reduced (the tricritical temperature tends to zero
as K ! �1).

In conclusion, we have shown that the Ghatak-
Sherrington model, i.e., the Blume-Capel model with
quenched disordered magnetic interactions, computed in
the exact FRSB ansatz, undergoes the inverse freezing
phenomenon acquiring latent heat from the heat bath as
the paramagnet becomes a spin glass. Many other models
can be built starting from this one, introducing an attractive
08720
or repulsive biquadratic interaction [the last term in
Hamiltonian (1)] and/or tuning the relative degeneracy of
the value S � 0 and S2 � 1 of the spin variable (the
Schupper-Shnerb ‘‘spin’’ [15]), but the GS one already
contains all features needed to qualitatively represent the
experimental results.

L. L. thanks S. Rastogi for providing a very interesting
bibliography and L. Palatella and L. Angelani for stimu-
lating discussions.
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