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We analyze the optical selection rules of the microwave-assisted transitions in a flux qubit super-
conducting quantum circuit (SQC). We show that the parities of the states relevant to the superconducting
phase in the SQC are well defined when the external magnetic flux �e � �0=2; then the selection rules
are the same as the ones for the electric-dipole transitions in usual atoms. When �e � �0=2, the
symmetry of the potential of the artificial ‘‘atom’’ is broken, a so-called �-type ‘‘cyclic’’ three-level atom
is formed, where one- and two-photon processes can coexist. We study how the population of these three
states can be selectively transferred by adiabatically controlling the electromagnetic field pulses. Different
from �-type atoms, the adiabatic population transfer in our three-level � atom can be controlled not only
by the amplitudes but also by the phases of the pluses.
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Introduction.—Analogous to natural atoms, supercon-
ducting quantum circuits (SQCs) can possess discrete lev-
els. Such artificial atoms provide promising ‘‘hardware’’
for quantum information processing. Microchip electric
circuits [1,2] show that quantum optical effects can also
appear in artificial atoms, allowing quantum information
processing in such circuits by using cavity quantum elec-
trodynamics (e.g., [1–5]).

Quantum optical technology, developed for atomic sys-
tems, can be used to manipulate quantum states of artificial
atoms. For example, the selective population transfer [6]
based on the stimulated Raman adiabatic passage
(STIRAP) with �-type atoms [7,8] has been applied to
superconducting flux qubits [4,9]. How to probe the deco-
herence of flux qubits by using electromagnetically in-
duced transparency has also been investigated in a SQC
[10] formed by a loop, with three Josephson junctions.

We investigate a generalized STIRAP approach for the
novel type of artificial atoms presented here. It is well
known that the parities of eigenstates are well defined for
usual atomic systems. Because of their atomic symmetry,
described by SO�3� or SO�4�, one-photon transitions be-
tween two energy levels require that the two corresponding
eigenstates have opposite parities, but a two-photon pro-
cess needs these states to have the same parities. However,
this situation can be significantly changed for artificial
atoms due to its easily controllable (by the external mag-
netic flux �e) effective potential.

Here, we focus on the flux qubit circuit [11,12], analyz-
ing its parity. When �e � �0=2, the qubit potential energy
of the superconducting phases is symmetric, and the inter-
action Hamiltonian between the time-dependent micro-
wave field and the qubit also has a well-defined parity. In
this case, the optical selection rules of the microwave-
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assisted transitions between different qubit states are the
same as for the electric-dipole ones in usual atoms: one-
and two-photon transitions cannot coexist. However, if
�e � �0=2, the symmetries of both the potential and the
interaction Hamiltonian are broken. Then the selection
rules do not hold, and an unusual phenomenon appears:
one- and two-photon processes can coexist [13,14]. In this
case, all transitions between any two states are possible.
Then the population can be cyclically transferred with the
assistance of (the amplitudes and/or phases of) microwave
pulses. Thus, we achieve a pulse-phase-sensitive adiabatic
manipulation of quantum states in this three-level artificial
atom. Usually, only the amplitude was considered for
adiabatic control.

Broken symmetry of the superconducting phase and
selection rules.—We consider a qubit circuit composed
of a superconducting loop with three Josephson junctions
(e.g., [11,15]). The two larger ones have equal Josephson
energies EJ1 � EJ2 � EJ and capacitances CJ1 � CJ2 �
CJ, while for the third Junction EJ3 � �EJ and CJ3 �
�CJ, with �< 1. The Hamiltonian is

H0 �
P2
p

2Mp
�
P2
m

2Mm
�U�’p;’m�;

with Mp � 2CJ��0=2��2 and Mm � Mp�1� 2��. The
effective potential U�’p;’m� is U�’p;’m� � 2EJ�1�
cos’p cos’m� � �EJ�1� cos�2�f� 2’m��, where ’p �

�’1 � ’2�=2 and ’m � �’1 � ’2�=2 are defined by the
phase drops’1 and’2 across the two larger junctions; f �
�e=�0 is the reduced magnetic flux.

Figure 1(a) summarizes numerical results of the
f-dependent spectrum for H0 up to the sixth eigenvalue,
with � � 0:8 and EJ � 40Ec (as in Ref. [11]). Figure 1(a)
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shows that near the point f � 0:5, e.g., f � 0:496, the
lowest three energy levels are well separated from other
higher energy levels. Then the lowest two energy levels
form a two-level artificial atom, called a qubit, with an
auxiliary third energy level. Figure 1(b) plots f-dependent
ratios Dij � �"3 � "2�=�"i � "j� of the transition fre-
quency between the fourth and third energy levels with
the other three among the lowest three energy levels (j <
i < 3). It is found that Dij � 1, so the transition frequen-
cies of different eigenstates are not equal when f is near
0.5. Then when we manipulate the lowest three states, the
fourth state will be well separated and not be populated.

When a time-dependent microwave electromagnetic
field �a�t� is applied through the loop, photon-assisted
transitions occur. For small �a�t�, the ’m-dependent per-
turbation Hamiltonian reads H1�’m; t� � I�a�t� �

I��0�
a cos�!ijt�, where I � ��2��EJ=�0� sin�2�f �

2’m� is the circulating supercurrent when �a�t� � 0, and
the amplitude ��0�

a is now assumed to be time independent.
The transitions are determined by the matrix elements
tij � hijI�a�t�jji for the ith and jth eigenstates jii and
jji, with eigenvalues "i and "j, respectively.

Analytically, the potentialU�’p;’m� is an even function
of ’p and ’m when 2f is an integer; however, H1�’m; t� is
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FIG. 1 (color online). (a) Energy levels, in units of EJ, of the
flux qubit vs reduced flux f for states j0i to j5i. (b) f-dependent
ratios of transition frequencies: Dij � �"3 � "2�=�"i � "j� with
j < i < 3. (c) Moduli jtijj of the transition matrix elements
between states jii and jji vs f, for the lowest three levels.
Transition diagram of three energy levels vs f: (d) corresponds
to f � 0:5 and (e) to f � 0:5, where the green solid (red dashed)
line means allowed (forbidden) transitions. (e) A triangle-shaped
or �-type energy diagram for f � 0:5, where all photon-assisted
transitions are possible and the electric-dipole selection rules do
not hold.

08700
an odd function of ’m. Thus, at these specific points, the
parities of H1�’m; t� and the eigenstates of H0 are well
defined. Then, the selection rules for the transition matrix
elements tij at these points have the same behavior as the
ones for the electric-dipole transitions in atoms due to the
odd parity of H1�’m; t�. However, if f deviates from these
points, the symmetries are broken and thus the dipole
selection rules do not hold. Figure 1(c) shows the
f-dependent transition elements jtijj for resonant micro-
wave frequencies between any two of the lowest three
states: j0i, j1i, and j2i. It shows that the transition j0i $
j2i is forbidden at f � 0:5, but the transitions j1i $ j2i
and j0i $ j1i reach their maxima at this point. Then these
three states have ladder-type or �-type transitions [6,7], as
shown in Fig. 1(d). The states j0i and j2i have the same
parities when f � 0:5. Figure 1(c) also demonstrates that
all photon-assisted transitions are possible when f � 0:5,
as in Fig. 1(e), showing what we call �-type (or triangle-
shaped) transitions. So a �-type ‘‘atom,’’ allowing transi-
tions j0i $ j2i and j1i $ j2i but prohibiting j0i $ j1i,
cannot be realized in this circuit.

Adiabatic energy levels of �-artificial atoms.—In
ladder-type transitions [6,7], the population of the lowest
state j0i can be adiabatically transferred to the highest state
j2i by applying two appropriate classical pulses. �-type
transitions are usually required [6–8] to adiabatically ma-
nipulate the populations of two states j0i and j1i by a third
(auxiliary) state j2i. In contrast with the usual �-type
model [10], in our case, when f � 0:5, the transitions
among the lowest three states can be cyclic.

Now we consider three electromagnetic pulses applied
through the loop. We assume f � 0:5, but near it. The
time-dependent flux is �a�t� �

P2
m>n�0��mn�t�e�i!mnt �

��
mn�t�e

i!mnt�, and the �mn�t� vary slowly on the time-scale
of the pulses, where !mn are the pulse carrier frequencies.
If !mn is resonant or near resonant with the transitions
among the nonadiabatic (i.e., diabatic) states jmi (m �
0; 1; 2), the total Hamiltonian in the interaction picture
can be written under the rotating wave approximation as
Hint �

P2
m>n�0��mn�t�ei�mntjmihnj � H:c:�, where the

complex Rabi frequencies �mn�t� � hmjI�mn�t�jni and
the detuning �mn � !m �!n �!mn, with !m � "m=@.

The instantaneous adiabatic eigenvalues of Hint are
given by Ek�2j��t�j

��������
1=3

p
cosf���2�k�1���=3g (k�

1;2;3). Here, cos��3
���
3

p
Re��01�t��12�t��20�t�ei!

0t�=
j��t�j3, j��t�j2 � j�12�t�j2 � j�20�t�j2 � j�01�t�j2, !0 �
�01 ��12 ��02. The eigenvalues are sensitive to the total
phase � of the product �01�t��12�t��20�t� � �0�t� and
detunning !0. It can be found that � � 0 or � when
j�01�t�j � j�12�t�j � j�20�t�j and  � !0t�� � n�.
In such case, there are energy level crossings and, thus,
the adiabatic description of the time evolution is no longer
correct. Comparing with the typical �-type atom [6], the
time-evolved zero eigenvalue E3 � 0 [corresponding to
E1 � j��t�j, E2 � �j��t�j] can also be found for Hint
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when  � �2p� 1��=2, for integer p. In such case, the
evolution is adiabatic.

Let us now consider Rabi frequencies �mn�t� as
Gaussian envelops, e.g., �21�t� � �0 exp�i�2 � �t�
!1�2=!2�, �10�t� � 0:9�0 exp�i�1 � �t� !2�2=!2�, and
�20�t� � 0:85�0 exp�i�3 � �t� !3�2=!2�, where ! is the
pulse width, �i is the pulse phase, and �0 > 0. To avoid
energy crossings, the pulse central times !i (i � 1; 2; 3) are
chosen such that j�12j � j�01j � j�02j during the time
evolution. For the case � � 0 and !0 � 0, Fig. 2(a) shows
the dependence of the eigenvalues Ek on the pulse central
times !i. If !i’s are equal or nearly equal for two pulses
[e.g., j�01�t�j and j�02�t�j], then two eigenvalues (e.g., E2

and E3) are closer to each other when the overlap region
between two pulses is large. Generally, the conditions� �
0 and !0 � 0 are not always satisfied. Combining our
expressions for � and !0, Fig. 2(b) plots a few snapshots
of the eigenvalues Ek�t� vs the phase  of �0�t�, for the
given pulse central times !1 � !2=2 � !3=2 � 2!.
Figure 2(b) shows that two of the eigenvalues Ek are closer
to each other for three points (� � ��; 0; �) in the range
j�j � �, when t � 3! and !0 � 0. If !0 � 0 and � � 0,
the phase  � !0t�� always changes in time. Two
eigenvalues are close to each other when  � n�. If the
pulses related to �mn do not have significant overlap (e.g.,
when t � 3:5!), then the three energy levels are well
separated. If the maximum amplitudes of two pulses
among j�01�t�j, j�12�t�j, and j�02�t�j are the same, then
the central times for these two pulses should be different to
avoid the energy level crossings in the significant overlap
area of these three pluses. However, if two central times,
among the three pluses, are the same, then their maximum
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FIG. 2 (color online). (a) The rescaled time t=! dependence of
the eigenvalues Ek of Hint with the detuning !0 � 0 for different
pulse central times: !1 � 2!2=3 � !3=2 � 2! (dash-dotted blue
curves); !1 � !3=2 � 2! and !2 � 3:7! (solid red curves), and
!1 � !2=2 � !3=2 � 2! (dotted black curves). (b) The phase-
dependent eigenvalues Ek at t � 3! (solid red curves) and t �
3:5! (dotted blue curves), with time delays !1 � !2=2 � !3=2 �
2!. Here eigenvalues are given in order E1, E3, and E2 from the
top curve to the bottom curve for the same color.
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amplitudes should be different in order to guarantee an
adiabatic evolution.

Adiabatic control of quantum states.—The population
transfer from one state to another is implemented via an
adiabatic evolution, where the system remains in the kth
eigenstate jEki � N�1

k �t��ak;2�t�j2i � ak;1�t�j1i � j0i� of
the instantaneous Hamiltonian Hint, with N2

k�t� �
jak;2�t�j

2 � jak;1�t�j
2 � 1. The relative population ampli-

tudes ak;2�t� � �e�i�02t�i�3�=bk�t���j�10�t��21�t�jei �

Ekj�20�t�j� and ak;1�t� � �e�i�12t�i�2�=bk�t���
�j�10�t��20�t�je

�i � Ekj�21�t�j� are determined by the
applied pulses. Here bk�t� � E2

k�t� � j�10�t�j
2.

The control of the quantum state can be realized by
choosing the classical pulses such that the diabatic compo-
nents in the adiabatic basis states jEki can be changed
during the adiabatic evolution. For the pulses with the
same central times as in Fig. 2, but arbitrary !0 and �,
we find that the probabilities Pk;m of the diabatic compo-
nents jmi (in orderm � 0; 1; 2) for the eigenstates jE1i and
jE2i are �j0i � j1i�=

���
2

p
before the overlap central time

area, but they evolve to �j1i � j2i�=
���
2

p
after the overlap

central time area. However, it evolves from j0i to j1i for
jE3i, which is more desirable since it coincides with the
diabatic (bare) ground state in the past. As an illustration,
Fig. 3(a) shows the pulse-phase and time-dependent prob-
abilities P3;m�t; �� for the eigenstate jE3i with !0 � 0 and
the pulses given in Fig. 2 with central times !1 � 2!2=3 �
!3=2 � 2!. It clearly shows that the bare ground state j0i
coincides with the adiabatic basis state jE3i when t! 0.
Thus, if the system evolves adiabatically, the ground state
j0i can evolve to a superposition of three states jmi at t �
3!, then gradually to a superposition �j1i �  j2i of the
two upper states, and finally to the first excited state j1i.
Generally, the weights of the superpositions discussed
above depend on �, !0, and the pulse magnitudes �01�t�,
�12�t�, �20�t�. Now let us discuss how the total phase �
affects the adiabatic evolution. The adiabatic evolution
requires that the nonadiabatic coupling hEkj

d
dt Eli and adia-

batic energy differences jEk � Elj satisfy [16] the condi-
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FIG. 3 (color online). (a) The rescaled time t=! and (phase)
�-dependent probabilities P3m of the diabatic components in the
third adiabatic eigenstate jE3i. (b) The representative top curves
of Fkl�t� are plotted for two phases � � � (dashed blue curve)
and � � �=2 (solid black curve) with the pulses given in Fig. 2
for central times !1�2!2=3�!3=2�2!; here, the detunings are
taken as �mn�0. The dash-dotted red line denotes Fkl�t��1.
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tion Fkl � jhEkj
d
dt Eli=Ek � Elj � 1. For given pulses, it

implies that the adiabatic condition depends not only on
the total detuning !0 and individual detunings �mn, but
also on the total phase �. In Fig. 3(b), the time evolutions
of Fkl are illustrated by showing only one representative
top curve for the central times (!1 � 2!2=3 � !3=2 � 2!)
in the resonant case (e.g., �mn � 0), for two special phases
� � � and � � �=2. Figure 3(b) shows that the adiabatic
condition Fkl � 1 is valid when � � �=2 but it is invalid
when � � �, for fixed envelopes of the Rabi frequencies.
By comparing with Fig. 2, it is also found that the adiabatic
evolution is invalid even when there are no energy levels
crossing in the overlap area of the pulses, since the non-
adiabatic coupling is very large in this area when � � �.

Discussions and conclusions.—We analyzed selection
rules of the artificial atom formed by a SQC, and our
analytical results were numerically confirmed. We find
that when the reduced external magnetic flux 2f is an
integer, the potential of the artificial atom has a well-
defined symmetry of the superconducting phases ’p and
’m, while the interaction Hamiltonian has odd parity.
Therefore the microwave-assisted transitions in this artifi-
cial atom are the same as electric-dipole ones. However,
when 2f is not an integer, the symmetry of the potential is
broken and the parity of the interaction Hamiltonian is also
not well defined. In this case, transitions between any two
levels are possible.

Based on the analysis of the selection rules, we discuss
the microwave-assisted adiabatic population transfer
among the lowest three energy levels when 2f is not an
integer. In this case, the population of the three levels can
be transferred cyclically, and a triangular � configuration
is formed. Different from � atoms [6,7], the energies of the
adiabatic states in this � atom are sensitive not only to the
amplitude but also the total phase � of the pulses and
detuning !0 between different microwave fields and
atomic transition frequencies. The adiabatic condition is
strongly affected by the pulse phase � when fixing other
pulse parameters. This pulse-phase-sensitive transition is
due to a broken symmetry, in which one and two-photon
processes can coexist. By adjusting the pulse phases, cen-
tral times and intensities, as well as the detunings, the
populations of the artificial atom can be adiabatically
controlled. Therefore, desired or target quantum states
can be prepared using this controllable pulse manipulation.

Finally, we emphasize the following: (i) the adiabatic
manipulation can be completed in about 0:36 (s, if the
pulse width is taken [4] as, e.g., ! � 60 ns; (ii) this artifi-
cial atom can be used to demonstrate three-level masers
[7]; (iii) it can be regarded as a natural candidate to realize
the quantum heat engine proposed in Ref. [17]; (iv) a
superposition of two upper energy levels can be adiabati-
cally prepared from the ground state, then a quantum beat
experiment should be accessible in this microchip electric
08700
circuit; (v) when one of the Rabi frequencies, e.g., �01�t�,
�12�t�, or �02�t�, and the environmental effects are negli-
gible, the � atom can be reduced to either a �-, V-, or
�-type atom [7]; (vi) the interaction between the quantized
microwave field and this � atom can generate quasi- and
nonclassical photon states [18]; (vii) since the total phase
of the pulses plays an important role in the state control of
�-type atoms, this controllable pulse phase might be used
to suppress decoherence. In summary, the artificial �
atoms introduced here provide many exciting future oppor-
tunities for quantum state control.
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(2001); P. Kŕal et al., ibid. 90, 033001 (2003); I.
Thanopulos et al., ibid. 92, 113003 (2004).

[15] T. P. Orlando et al., Phys. Rev. B 60, 15 398 (1999).
[16] C. P. Sun, Phys. Rev. D 41, 1318 (1990).
[17] M. O. Scully et al., Science 299, 862 (2003).
[18] C. P. Sun et al., quant-ph/0506011.


