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Wind Reversals in Turbulent Rayleigh-Bénard Convection
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The phenomenon of irregular cessation and subsequent reversal of the large-scale circulation in
turbulent Rayleigh-Bénard convection is theoretically analyzed. The force and thermal balance on a
single plume detached from the thermal boundary layer yields a set of coupled nonlinear equations, whose
dynamics is related to the Lorenz equations. For Prandtl and Rayleigh numbers in the range 10�2 �
Pr � 103 and 107 � Ra � 1012, the model has the following features: (i) chaotic reversals may be
exhibited at Ra � 107; (ii) the Reynolds number based on the root mean square velocity scales as Rerms �
Ra�0:41���0:47� (depending on Pr), and as Rerms � Pr��0:66���0:76� (depending on Ra); and (iii) the mean
reversal frequency follows an effective scaling law !=��L�2	 � Pr��0:64
0:01	Ra0:44
0:01. The phase
diagram of the model is sketched, and the observed transitions are discussed.
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FIG. 1. Sketch of the motion of a single plume of width �� and
height L. In an aspect-ratio-one container, the circulation radius
is given by L=2.
One important issue in turbulent Rayleigh-Bénard con-
vection is the interplay between the large-scale circulation
(the so-called wind) [1] and the dynamics of plumes de-
tached from the thermal boundary layers [2]. In particular,
such interplay seems to be relevant in the process of
circulation reversals, which occur in an irregular time
sequence [3–8]. Remarkably, similar reversals are also
observed in the wind direction of the atmosphere [9] and
in the magnetic polarity of the earth [10].

In principle, two reversal scenarios are possible:
Reversal through cessation of the convection roll, and
reversal through its azimuthal rotation. With two tem-
perature sensors placed close to each other near the side-
wall [4,5], one can detect roll reversals, but not distin-
guish between the two scenarios. With several sensors
placed along the azimuth of the cell, Cioni et al. [6]
succeeded to detect reversal through azimuthal rotation
of the roll. Reversal through rotation was also detected in
Refs. [7,8]. However, with an ingenious multiprobe setup,
Brown, Nikolaenko, and Ahlers [8] were able to distin-
guish between the rotation and cessation scenarios, and
many reversals through cessation were detected. Reversal
through cessation was also observed in two-dimensional
numerical simulations of the Boussinesq equations (see
Fig. 8 of Ref. [11] and Fig. 12 of Ref. [12]), where the
rotation scenario is of course impossible.

Since reversal through cessation is a more surprising
scenario, the aim of the present work is to reveal its
physical mechanism. Qualitatively, the picture is as follows
[13]: If an uprising hot plume gets too fast because of a
temperature surplus, it fails to cool down sufficiently when
passing the top plate. It then is still warmer than the
ambient fluid when advected down along the sidewall.
By buoyancy it therefore looses speed and counteracts
the large-scale circulation. Indeed, the downward wind
may be counteracted so strongly that it stops or even
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reverses its direction. This mechanism can be effective
only for sufficiently strong wind, i.e., for sufficiently large
Reynolds number, because for slow motion the thermal
diffusivity � has enough time to reduce the temperature
surplus of the originally warmer plume relative to its
neighborhood. Then its power to reverse the circulation
by buoyancy is gone.

The model—.In order to quantify the cessation mecha-
nism discussed above, let us first characterize the size of a
circulating plume. As shown in Fig. 1, a single plume will
be understood as a thermal structure of width �� (the
thickness of the thermal boundary layer from which it ori-
ginated) and length L (the height of the convection con-
tainer). In addition, its volume is assumed to scale as �2

�L,
with a typical cross-section area �2

�, and surface area ��L.
Supposing that such a plume circulates with velocity

U�t	, it is reasonable to expect that its dynamics is essen-
tially a matter of balance between buoyancy and drag.

In the Boussinesq approximation the buoyancy force
(per mass) is given by fb � ��p�T � T0	g, where �p is
the isobaric thermal expansion coefficient, T the plume
temperature, T0 the mean temperature, and g the gravita-
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tional acceleration. On the other hand, the drag force (per
mass) on the plume has the strength fd �

1
2C�Re	U

2L�1,
where C�Re	 is the drag coefficient, and the Reynolds
number is defined by Re � LU��1. Here, C�Re	 is taken
as [14]
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where b � 8:4 is the Kolmogorov constant. Equation (1)
describes the transition from the strongly decreasing drag
�1=Re in the viscous regime to the Re-independent drag in
the turbulent regime. As pointed out in Ref. [14], it pretty
well agrees with experimental data.

Now, let us consider the thermal interaction between a
single plume and its surrounding. Strictly speaking, the
surrounding consists of the fluid as well as the sidewalls,
and the top and bottom plates. We do not distinguish
between all these and describe the temperature of the
plume surrounding Ts�’	 by a time-independent profile:

Ts�’	 � T0 �
�

2
cos’; (2)

where � is the temperature difference between the hori-
zontal plates. We Fourier expand the temperature variable
of the plume:

T�’; t	 � T0 �
X1
n�1

�An�t	 sin�n’	 � Bn�t	 cos�n’	�; (3)

where An�t	 and Bn�t	 are the amplitudes.
Equations of motion—.In order to derive the equations

of motion for a single plume, we follow an analogy with
the Malkus waterwheel [15,16]. On the basis of this anal-
ogy, our intent is to acquire an understanding of the wind
dynamics through nonlinear model equations.

To begin, let us consider the balance of forces (per mass)
on the plume:

dU
dt

� fb�’; t	 sin’� fd: (4)

Substituting the previous relations into (4), and integrating
the resultant expression with respect to ’ from 0 to 2�, one
readily finds

dU
dt

�
1

2
�pgA1 �

1

2
C�Re	

U2

L
: (5)

Remarkably, the temporal behavior of U is coupled to the
amplitude of the first temperature mode A1 only.

The temporal change of the plume temperature is given
by advection and by diffusion. For the latter, we assume a
relaxation ansatz for the temperature deviation T � Ts
from the surrounding, with the diffusive time scale �� �
��L=�, i.e.,

@T
@t

�
U
L=2

@T
@’

� �
T � Ts

��
: (6)
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The physics behind the definition of �� is that the thermal
loss is proportional to the plume surface, and inversely
proportional to the thermal diffusivity.

Substituting (2) and (3) into (6), and equating the co-
efficients of each harmonic separately, one obtains

dA1

dt
� �

�
��L

A1 �
2

L
UB1; (7)

dB1

dt
� �

�
��L

B1 �
��
2��L

�
2

L
UA1: (8)

We write the three coupled ODEs (5), (7), and (8) in
nondimensional form. The dimensionless variables are
X � 2�1Nu�2��1LU, Y � 2r��1A1, Z � �Ra�1

c �
2B1�

�1	r, � � 2Nu�L�2t, and the dimensionless control
parameters read

! �
9

4

Pr

Nu
; and r �

1

18Nu

Ra

Rac
; (9)

where Rac � 1708, Pr � �=� is the Prandtl number, and
Ra � �pgL3�=���	 the Rayleigh number. The Nusselt
number Nu comes from the relation ��=L � 1=�2Nu	.
Then, the system of Eqs. (5), (7), and (8) becomes

dX
d�

� !Y � !X

2
41�

�����������������������������
1�

27

2b3!2 X
2

s 3
5; (10)

dY
d�

� rX� Y � XZ; (11)

dZ
d�

� �Z� XY: (12)

This system resembles the Lorenz equations [17,18],
which have also been used to describe laminar flow con-
fined in a toroidal loop [19,20]. Here Eqs. (10)–(12) have
been derived to model plume reversals in the turbulent
regime. They will be referred to as the modified Lorenz
equations. There are two essential differences as compared
to the standard Lorenz system [21]: (i) The parameters !
and r are related to the Nusselt number, which is known to
follow a nonuniversal (Pr-dependent) scaling with Re [22].
This is a key difference, since in the Lorenz equations ! �
Pr and r � Ra=Rac. (ii) The ordinary differential equation
for X has a new nonlinear term, due to the turbulent drag on
the plume.

Phase diagram—.To investigate the dynamical proper-
ties of the system (10)–(12), we have scanned the pa-
rameter space Ra� Pr in the range 107 � Ra � 1012,
10�2 � Pr � 103. Technically, our numerical scheme
was based on a fourth-order Runge-Kutta method [23],
with adaptive step size control in time, and increments of
0.1 for log10�Pr	 and log10�Ra	. The Nu input required for
coefficients (9) is provided by Grossmann-Lohse theory
[22], and as an initial condition we adopted (X � 1, Y � 1,
Z � 1). As for a check with other initial values, see below.
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FIG. 2. Time series of the dimensionless plume velocity X, for
Pr � 0:1 at (a) Ra � 1010:8 (uniform circulation),
(b) Ra � 1010:9 (chaotic reversals), and (c) Ra � 1011:0 (periodic
reversals).
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FIG. 4. Reynolds number variance Rerms based on the root
mean square velocity as function of (a) Ra and (b) Pr.
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An insight into the structure of the phase diagram can be
acquired by considering some representative time series of
X��	. In particular, for fixed Pr and increasing Ra, three
examples are shown in Fig. 2: first, a state of uniform
circulation [cf., plate (a)]; then emergence of chaotic re-
versals [plate (b)]; and, ultimately, periodic reversals
[plate (c)]. Figure 3 shows the phase diagram in Ra� Pr
space, displaying a sharp onset between the steady and the
reversal domain. We emphasize that the transition curve
between these domains remains unchanged for a variety of
initial conditions.

Onset of reversals—.The onset of reversals can be
understood in terms of the typical time scales of the
system: the thermal diffusion time �� and the turnover
time �U � �L=hUi, where h�i denotes the time average.
Qualitatively, it is reasonable to expect wind reversals
when �U � ��, because in such case the circulation is
so fast that the plume has no time to lose its tempera-
ture contrast. Indeed, we find that the ratio �U=�� �
2�NuPr�1hRei�1 is a monotonically decreasing function
of Ra for constant Pr, roughly proportional to Ra�1=6. The
overall form of the onset curve well resembles its counter-
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FIG. 3. Phase diagram in the Ra� Pr plane: at sufficiently
large Ra, the state of uniform circulation (blank region) gives
place to chaotic (striped region) or periodic (dotted region) wind
reversals. Note the small periodic windows in the chaotic range.
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part in the phase diagram of the Lorenz model, cf., Dullin
et al. [24].

Reynolds number—.We now come to the dependence of
the variance of the Reynolds number Rerms � Lurms��1

based on the root mean square velocity urms ����������������������������
h�U� hUi	2i

p
. Figure 4 shows Rerms�Ra; Pr	: In

plate (a), the Ra-scaling exponent increases from
0.41 to 0.47 for increasing Pr from 0.7 to 316; in
plate (b), the Pr-scaling exponent decreases from �0:66
to �0:76 for falling Ra from 1012 to 109. Experimentally, a
similar Pr dependence has been reported [25] for the
Reynolds numbers based on the maximum wind velocity,
on the oscillation frequency of the large-scale circulation,
and on the rms velocity.

Mean reversal frequency—.The abrupt change of X��	
with � [cf., Figure 2(b)] suggests that the wind switching
can be approximately considered as an almost instanta-
neous event represented by the moment at which it occurs.
Here, we follow Sreenivasan et al. [4] and define t0n as the
interval between an arbitrary origin in time and the nth
wind reversal. Similarly as in [4], we also find a linear
relation t0n � n, which suggests a mean interval �t0 between
reversals. In this way, we define ! � 1=�t0 as the mean
reversal frequency, and its dimensionless counterpart as
~! � !L2=�.

Figure 5 shows that ~!� Pr��0:65
0:01	Ra0:44
0:01. To our
knowledge, the only experimental measurement of the
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Pr and (b) Pr for given Ra.
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reversal frequency has been carried out in cryogenic he-
lium gas [26], namely, ~!� Ra0:71 for Pr � 0:75 and 2:1�
108 � Ra � 1� 1013. The disagreement between our re-
sult and the particular measurement suggests that a model
based on only 3 modes for the plumes is quantitatively
inadequate. In this qualitative sense, our simple determi-
nistic system well mimics the dynamics of reversals, and is
a complementary approach to the stochastic model of
noise-induced switchings between two metastable states
[4]. Here, the Lorenz attractor itself captures the bistable
transitions, but a more quantitative description of the re-
versal phenomenon (also including the rotation scenario)
would involve a subtle combination of deterministic chaos
and noise. This could be done in the spirit of Ref. [27]
(Sec. III C), and is left for future work.
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