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Quasiregular Concentric Waves in Heterogeneous Lattices of Coupled Oscillators
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We study the pattern formation in a lattice of locally coupled phase oscillators with quenched disorder.
In the synchronized regime quasiregular concentric waves can arise which are induced by the disorder of
the system. Maximal regularity is found at the edge of the synchronization regime. The emergence of the
concentric waves is related to the symmetry breaking of the interaction function. An explanation of the
numerically observed phenomena is given in a one-dimensional chain of coupled phase oscillators.
Scaling properties, describing the target patterns are obtained.
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The study of coupled oscillators is one of the fundamen-
tal problems in theoretical physics and has led to many
insights into the mechanisms of spatiotemporal pattern
formation in oscillatory media [1–4]. Renewed interest
stems from its possible role in many biological systems
like cardiac tissue [5], neural [6] and ecological systems
[7]. However, nearly all theoretical studies have been done
with idealized systems of identical oscillators, whereas not
much is known about the dynamics and pattern formation
in heterogeneous media [8].

Target waves are one of the most prominent patterns in
oscillatory media and are usually associated with the pres-
ence of local impurities in the system [1,9,10]. These
pacemakers change the local oscillation frequency and
are able to enslave all other oscillators in the medium,
which finally results in regular ring waves [1,11].
However, the assumption of a discrete set of localized
pacemaker regions in an otherwise homogeneous medium
is somewhat artificial. Especially biological systems are
often under the constraint of large heterogeneity. In such a
disordered system no point can clearly be distinguished as
a pacemaker and it is not obvious whether such a system
can sustain highly regular target patterns and where they
should originate.

The emergence of target patterns in heterogeneous os-
cillatory media was first reported and explained in [12] and
subsequently observed in [7]. In this Letter we show that
the random nature of the medium itself plays a key role in
the formation of the patterns. As the disorder in a rather
homogeneous synchronized medium is increased we ob-
serve the formation of quasiregular target waves, which
result from an intricate interplay between the heterogeneity
and a symmetry breaking of the coupling function. Further,
we obtain the scaling properties of the synchronization
frequency and wavelength in the limit of small phase
differences between neighboring oscillators.

We study a system of N coupled phase oscillators [1]

_� i � !i � �
X
j2Ni

���j � �i�; i � 1; . . . ; N: (1)
05=95(8)=084101(4)$23.00 08410
Here, �i represents the phase of oscillator i, which is
coupled with strength � to a set of nearest neighbors Ni
in a one- or two-dimensional lattice. The natural frequen-
cies !i are fixed in time, uncorrelated, and taken from a
distribution 	�!�. A scaling of time and a transformation
into a rotating reference frame can always be applied so
that � � 1 and the ensemble mean frequency �! is equal to
zero. We refer to the variance 
2 � var�!i� of the random
frequencies as the disorder of the medium.

The effects of coupling are represented by an interaction
function � which, in general, is a 2�-periodic function of
the phase difference with ��0� � 0. For weakly coupled,
weakly nonlinear oscillators, � has the universal form
[1,13]

���� � � sin��� � �1� cos�����: (2)

The symmetry breaking parameter  describes the non-
isochronicity of the oscillations [1].

It is well known that for sufficiently small disorder the
oscillators eventually become entrained to a common lock-
ing frequency  [1–3]. Since the oscillators are nonident-
ical, even in this synchronized state they are usually
separated by fixed phase differences. These can sum up
over the whole lattice to produce spatiotemporal patterns,
which are characterized by a stationary phase profile, �i �
�1. This is demonstrated in Fig. 1, where we have simu-
lated system (1) with interaction (2) in a two-dimensional
lattice. If the heterogeneity is small, the oscillations across
the lattice synchronize to a homogenous phase profile
[Fig. 1(a)]. However, by increasing the disorder we observe
the formation of target waves with decreasing wavelength
[Figs. 1(a)–1(c)]. The emergence of the concentric waves
is due to the symmetry breaking in the interaction function.
For example, by reducing  in Eq. (2) the pattern becomes
more irregular [Fig. 1(d)].

It is the counterintuitive observation that the isotropic
medium with random frequency distributions of no spatial
correlation (see Fig. 1 insets) can generate and sustain very
regular wave patterns. Since the Eqs. (1) generally approx-
imates the phase dynamics for coupled limit cycle oscil-
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FIG. 2. Phase differences �i (left) and phase profile �i � �1
(b),(d) in units of 2� for a chain of 500 phase oscillators (4) with
uniformly distributed frequencies !i 2 ��0:1; 0:1� and open
boundaries. (a),(b) antisymmetric coupling (2) with  � 0.
(c),(d) unidirectional coupling (5) with ���� � �����.
(e) System (2) with  � 2. (f) Transfer map T��i� (8) for
Eq. (2) with  � 2 (solid line) and fixed points�� (solid circles).

FIG. 1. Simulation results in a two-dimensional lattice of
150x150 phase oscillators (1) and (2) with nearest neighbor
coupling, � � 1, periodic boundary conditions, homogeneous
initial conditions, and (a)  � 2, 
 � 0:029, (b)  � 2, 
 �
0:173, (c)  � 2, 
 � 0:433, and (d)  � 0:3, 
 � 0:433. The
random frequencies are taken from a uniform distribution of
variance 
2. Plotted is the sine of the phases �i as gray level.
Similar results are obtained for open boundaries. (a)–(c): effect
of increased heterogeneity; (c)–(d): influence of nonisochronic-
ity . Insets show the natural frequencies !i as gray levels.
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lators this effect is not restricted to phase equations (1).
Similar disorder induced target patterns have been ob-
served in lattices of a variety of oscillator types, including
predator-prey and neural systems, chemical reactions, and
even chaotic oscillators [7,12].

In the synchronized state, all oscillators rotate with the
constant locking frequency _�i � , so that system (1)
becomes a set of N equations, which have to be solved
self consistently for the phases �i and  under some
imposed boundary conditions. To determine , suppose
first that the coupling function � is fully antisymmetric
����� � �����, e.g.,  � 0 in Eq. (2). In this case, by
summing up all equations in (1) we obtain  � �! � 0 in
the rotating frame. Thus, nontrivial locking frequencies
 � 0 only arise if ���� has a symmetric part �S��� �
1
2 ����� � ������,

 �
1

N

X
i;j2Ni

�S��j � �i�: (3)

For any coupling function �, given a realization of the
natural frequencies !i, we ask for the resulting phase
profile �i. Note that the inverse problem is easy to solve:
for any regular phase profile �i we can calculate  from
Eq. (3), which after inserting into Eq. (1), yields the
frequencies !i.

Insights into the pattern formation can be gained from a
one-dimensional chain of phase oscillators [12,14]

 � !i � ����i� � ����i�1��: (4)

Here we use �i � �i�1 � �i for the phase differences be-
08410
tween neighboring oscillators, i � 1; . . . ; N � 1. Further,
we assume open boundary conditions �0 � �N � 0. The
self consistency problem is trivial for an antisymmetric �
where  � 0. In this case the ���i� simply describe a
random walk ���i� � ��ij�1!j. Thus, for small j�ij the
phase profile �i is essentially given by a double summa-
tion, i.e., a smoothening, over the disorder !i [see
Figs. 2(a) and 2(b)]. Note that synchronization can only
be achieved as long as the random walk stays within the
range of �. Thus, with increasing system size N, synchro-
nization becomes more and more unlikely.

The emergence of target waves is connected to a break-
ing of the coupling symmetry. To explore this we study a
unidirectional coupling with respect to �,

���� � f�������; for j�j 
 1; (5)

with the Heaviside function ���� and f��> 0�> 0. Here,
the phase of oscillator i is only influenced from neighbor-
ing oscillators which are ahead of i. If the solution is small
phase differences we are not concerned about the period-
icity of ���� as the coupling is only required to be unidir-
ectional close to zero. For open boundaries �0 � �N � 0
the solution to (4) and (5) is given by

�i �
�
f�1��!i�; i < m
�f�1��!i�1�; i � m

: (6)

Here, the index m is the location of the oscillator with the
largest natural frequency, which also sets the synchroniza-
tion frequency
1-2
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FIG. 3 (color). Characterization of wave patterns by the lock-
ing frequency  (a), the wave length �= (b), the quality factor
Q� (c), and the cross correlation r between neighboring phase
differences (d). Numerical solutions are obtained by integrating
system (1) and (2) for one-dimensional (circles) and two-
dimensional lattices (squares) in the synchronization regime.
In one dimension the integrations were carried out with chains
of length 500 and averaged over 50 simulation runs for  � 2
(red circles) and  � 6 (blue circles). In the two-dimensional
system each point (green squares) represents one single simula-
tion in a 100x100 lattice with  � 2. The results using the
eigenvector method (12) are shown as (black �). Each point
represents an average of 500 simulations with N � 256. Further,
indicated in (a),(b) are straight lines with a given exponent � and
� (dashed lines). The wavelength was obtained for one dimen-
sion as � � 2�=�� and in the two-dimensional system from a
Fourier analysis of the phase profile. The plateaus in the wave-
length plot are finite size effects.
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 � !m � maxi�!i�: (7)

The phase differences (6) are positive to the left of the
fastest oscillator, i < m, and negative to the right i � m.
As a consequence, the phase profile has a tent shape with a
mean slope that is given by averaging (6) with respect to
the frequency distribution [Figs. 2(c) and 2(d)]. We call this
solution type a quasiregular concentric wave. This example
illustrates that the asymmetry of the coupling function
increases the influence of faster oscillators and effectively
creates pacemakers with the potential to entrain the whole
system. Note, that the solution (6) and (7) is not possible
without disorder, i.e., for 
 � 0. Further, in contrast to the
antisymmetric coupling, here synchronization can be
achieved for chains of arbitrary length.

In general, the coupling function � will interpolate
between the two extremes of fully antisymmetry and uni-
directional coupling in the vicinity of zero, e.g., Eq. (2)
with  � 0. As shown in Fig. 2(e) this also gives rise to
quasiregular concentric waves, very similar to the exactly
solvable system Fig. 2(c). To further investigate the origin
of these patterns, note that for any given  system (4)
implicitly defines two transfer maps, T:f�i�1; !ig � �i
and T�1

 :f�i;!ig � �i�1, which describe the evolution of
the phase differences into the right or the left direction of
the chain, respectively. The random frequencies !i can be
seen as noise acting on the map [see Fig. 2(f)]

�i � T��i�1; !i� � ��1��!i � ����i�1��: (8)

It is easy to see that the breaking of symmetry leads to a
pair of fixed points, �� and ���, in the noisy maps

�� � T���; �!� � ��1
S

�


2

�
: (9)

The transfer map can be linearized at the fixed points so
that T��� � �;!� � �� � a� � b! with a � �0�����

�0����

and b � 1
�0����

. While one fixed point, �� in the case (2)
with  > 0, is linearly stable (jaj � 1) the other fixed point
is necessarily unstable. These stability properties are in-
verted for T�1

 . Thus, when iterating to the right of the
chain the �i are concentrated around �� and around ���

when iterating to the left. As a consequence, the general
solution of the self consistency problem (4) is built up from
two branches around the two fixed points ���, super-
imposed by autocorrelated fluctuations �i (see Fig. 2)

�i � ��� � �i: (10)

After summation, this leads to the quasiregular tent shape
of the phase profile �i. In a first approximation the �i
describe a linear autoregressive stochastic process

�i � a�i�1 � b!i: (11)

We want to stress that the fluctuations �i are an essential
ingredient of the solution. Although the emerging concen-
tric waves seem to be regular, the underlying heterogeneity
08410
of the system does not permit analytical traveling wave
solutions �i�t� � t� kji�mj.

The general solution (10) allows for very different phase
profiles (see Fig. 2). The regularity of the wave pattern
depends on the relative influence of the mean slope ��

compared to the fluctuations �i and can be measured by the
quality factorQ� � ��2=var�j�ij� and the autocorrelation
r of the�i. As demonstrated in Fig. 3, for sufficiently large
systems, both Q� and r only depend on the product 

(see below). For 
! 0 we find Q� ! 0 and r! 1, and
the solution is essentially a random walk [see Figs. 2(a) and
2(b)]. With increasing values of 
 the correlations r are
reduced and eventually become negative. Furthermore,Q�
increases with the product 
, and for  > 1 can rise
drastically [see Fig. 3(c)]. Thus, with increasing disorder
of the system we obtain more regular patterns until syn-
chronization is lost.

A straightforward integration of system (1) can be prob-
lematic due to the long transients. Another approach,
which also applies for two-dimensional lattices, relies on
the Cole-Hopf transformation of system (1). Assume that
the �i are small so that it is possible to approximate the
1-3
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coupling function (2) around zero by ���� � 1
 �

�e� � 1� �O��3�. After the Cole-Hopf transformation
�i �

1
 lnqi, the synchronized lattice (1) is reduced to a

linear system [1,10,12],

_qi � Eqi � 
#i qi �
X
j2Ni

�qj � qi�; (12)

where the random frequencies #i � !i=
 are of zero
mean and variance one and E �  is some eigenvalue.
System (12) is known as the tight binding model for a
particle in a random potential on a lattice [15]. The eigen-
vector qmax corresponding to the largest eigenvalue Emax

will, in the retransformed system of angles, outgrow the
contribution of all other eigenvectors to the time dependent
solution linearly in time. If the largest eigenvalue is non-
degenerate, the unique synchronized solution is

�i�t� � �1�t� �
1


log

�
qmax
i

qmax
1

�
: (13)

Equation (13) is well defined since the components of qmax

do not change sign. Anderson localization theory [15]
predicts exponentially decaying localized states with
some localization length l, which after applying the reverse
Cole-Hopf transformation yields the observed tent-shape
phase profile with wavelength �� l. Concentric waves
emerge when � becomes smaller than the system size.

For extremal values of 
, the system (12) has well
defined scaling properties Emax � �
�� and l� �
���

[15]. Perturbation theory yields � � 2 for 

 1 and
� � 1 for 
� 1. For the exponent � we find � & 1 in
the one-dimensional system, while 1 � � � 2 in the two-
dimensional lattice. This implies for the synchronization
frequency  and the wavelength �

� ��1
�; �� 1��
��: (14)

Here,  does not influence the wavelength as much as 

but while an increase of  in one dimension leads also to an
increasing wavelength, the effect in two dimensions is the
opposite.

In one dimension the scaling with 
 holds as long as
Eq. (12) can approximate the transfer map reasonably. The
approximation breaks down when the correlation r of the
phase differences becomes negative. In this regime the
quality factor Q� strongly depends on both 
 and .
The noise term b!i in (11) can become small with increas-
ing . This regime, which is not described by the Anderson
approximation, can produce very regular concentric waves
near the border of desynchronization. Further, our observ-
ables (Fig. 3) only depend on the system size for N & 100.

The constructive role of noise has often been studied
[16]. It has been shown that in excitable systems spatial
noise can enhance the pattern formation and, for example,
08410
is able to promote traveling waves [17]. In heterogeneous
oscillatory media the emergence of target patterns was
reported in [12]. Here, we have analyzed the origin of
these structures and, in particular, we have shown that
fluctuations are essential for the observed dynamics.
Whereas local coupling tends to synchronize the oscilla-
tors, the imposed disorder tends to desynchronize the array.
The tension between these two opposing forces can give
rise to quasiregular target patterns.

This work was supported by the German Volkswagen
Stiftung and SFB 555.
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