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Collisions of Halo Nuclei within a Dynamical Eikonal Approximation
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The dynamical eikonal approximation unifies the semiclassical time-dependent and eikonal methods. It
allows calculating differential cross sections for elastic scattering and breakup in a quantal way by taking
into account interference effects. Good agreement is obtained with experiment for 11Be breakup on 208Pb.
Dynamical effects are weak for elastic scattering.
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The experimental study of the breakup of weakly bound
exotic nuclei is one of the main tools for determining their
properties. The analysis of those experiments requires an
accurate description of collision processes leading to the
continuum. Starting with some model of the loosely bound
nucleus, different cross sections corresponding to feasible
measurements need to be calculated with the best possible
reaction mechanism.

An efficient approach to breakup involves a semiclassi-
cal approximation [1]. At high enough velocities, the rela-
tive motion between the target and projectile can be treated
in a classical way. In the target frame of reference, the
projectile center of mass follows a classical trajectory that
can be well approximated by a straight line or a Rutherford
trajectory. When following the trajectory, the projectile
experiences a Coulomb and nuclear field from the target
that varies in time. This time variation induces excitation
and breakup. This approach is a natural extension of the
Coulomb excitation theory [1]. The generalization involves
taking into account not only the nuclear interaction but
also, and mostly, excitations into the continuum.

The semiclassical approximation leads to the resolution
of a time-dependent Schrödinger equation [2–12]. It is a
fully dynamical theory where all couplings, not only be-
tween the bound states and the continuum but also cou-
plings inside the continuum, are properly taken into
account. A purely numerical resolution of the time-
dependent Schrödinger equation presents the advantage
that no simplifying assumptions need to be done about
the description of the continuum. Nevertheless, the validity
of the physical results rely on the convergence and the
accuracy of the solution. In recent years, much progress
has been achieved in this numerical resolution and several
groups have developed accurate three-dimensional codes
for the study of breakup [3–12]. Several numerical tech-
niques lead to consistent results for the total breakup cross
sections and for momentum distributions.

The semiclassical approach, however, has the drawback
not to be a fully quantal approximation. It does not fulfill
energy conservation. Differential cross sections are usually
not accurate because they lack some interference effects.
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This is especially true for elastic scattering for which only
crude estimations are available.

Different quantal theories have been proposed or ex-
tended to allow a treatment of excitations in the continuum.
Let us mention the continuum discretized coupled-
channels method [13,14], the adiabatic approximation
[15], the distorted-wave Born approximation [16,17], and
the eikonal approximation [18,19].

The eikonal approximation presents a number of in-
teresting features and some drawbacks. To some extent,
it takes into account the few-body degrees of freedom
at all orders. It has a rather simple physical interpreta-
tion and allows a decomposition of the amplitudes into
different components. However, the eikonal approxima-
tion consists in an approximate calculation of the phase
of the scattering wave function. By lack of dynamical
effects, the projectile internal probability density is not
modified when all potentials are real. This approximation
is mostly valid for peripheral reactions. Some technical
difficulties appear related to the long range of the Coulomb
interaction.

The aim of this Letter is to develop a common general-
ization of the semiclassical and eikonal methods. The
dynamical eikonal method is a purely quantal method
that combines the advantages of both approaches. It im-
proves the eikonal method in the sense that missing dy-
namical effects are now taken into account. It is also an
improvement of the semiclassical approach as it allows in a
simple and natural way to calculate differential cross sec-
tions, including for elastic scattering. The principle of this
generalization has been proposed [20] and applied [21] for
inelastic scattering in the context of the close-coupling
method in atomic physics. Other eikonal-inspired general-
izations are encountered in nuclear physics [22–24]. Here,
we present a simple general derivation of the dynamical
eikonal method and apply it to the elastic scattering and
breakup of a halo nucleus. We calculate differential cross
sections that were not reachable in the semiclassical ap-
proach. We also compare the traditional eikonal approxi-
mation with its dynamical extension in order to assess its
validity and the role of dynamical effects.
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A two-body projectile made up of a structureless core
with mass mc and a structureless fragment with mass mf

(mP � mc �mf) collides a target with mass mT . Let R be
the coordinate of the center of mass (c.m.) of the projectile
with respect to the target and r the coordinate of the frag-
ment with respect to the core. The corresponding momenta
are denoted as P and p, respectively. The core-fragment
interaction Vcf provides the projectile properties through
the internal Hamiltonian

H0 �
p2

2
cf
� Vcf�r�; (1)

where 
cf is the core-fragment reduced mass. The ground-
state wave function and energy of the projectile are �0 and
E0, respectively. After removing its c.m. motion, the
Hamiltonian of the three-body system reads [19]
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where 
 is the projectile-target reduced mass. The core-
target and fragment-target interactions are described with
the optical potentials VcT and VfT , respectively.

In the Schrödinger equation H	�R; r� � ET	�R; r�, let
us introduce the usual eikonal ansatz [18,19]

	�R; r� � eiKZ	̂�R; r�; (3)

where the wave number K is related to the total energy ET
of the system by

ET �
@
2K2

2

� E0: (4)

Hence, the Schrödinger equation becomes

@
2

2

�R	̂� i@v

@	̂
@Z

� �H0 � VcT � VfT � E0�	̂; (5)

where v � @K=
 is the asymptotic relative velocity. The
eikonal approximation consists in neglecting the first term
in Eq. (5) [18]. In the standard eikonal theory, it is com-
plemented by the adiabatic approximation where H0 is
replaced by E0 [19]. At this step, the dynamical effects
due to H0 are thus lost. Here we do not perform this second
approximation. Rather we introduce the auxiliary timelike
variable

t � Z=v: (6)

The eikonal solution is then obtained by solving

i@
@	̂
@t

� �H0 � VcT � VfT � E0�	̂ (7)

with the initial condition 	̂!t!�1�0�r�. Equation (7) is
formally equivalent to the semiclassical time-dependent
Schrödinger equation with straight-line trajectories [11].
The transverse part b of the quantal coordinate R plays the
role of the impact parameter in Eq. (7) although we are
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here in a purely quantal context. The dynamical eikonal
wave function is given by Eq. (3) as a function of the time-
dependent solution 	̂�b; Z=v; r� of Eq. (7).

With this approximate wave function, one can calculate
the different transition matrix elements for elastic or in-
elastic scattering and dissociation. We sketch here the
derivation for elastic scattering. The transition matrix ele-
ment reads [25]

Tfi � heiK	R�0�r�jVcT � VfT j	�R; r�i: (8)

By using Eqs. (3) and (7), and H0�0 � E0�0, one obtains

Tfi � i@vheiK	R�0�r�jeiKZ
@
@Z

	̂�R; r�i

� i@v
Z

dRe�iq	b @
@Z

h�0�r�j	̂�R; r�i: (9)

The transferred momentum q � K� KẐ is assumed to be
purely transverse. With the notation

S0�b� � h�0�r�j	̂�R; r�iZ��1 � 1; (10)

the transition matrix element reads

Tfi � i@v
Z

dbe�iq	bS0�b�: (11)

As S0 does not depend on the orientation of b, it becomes

Tfi � i2�@v
Z 1

0
bdbJ0�qb�S0�b�: (12)

The elastic differential cross section is then easily deduced.
In a similar way, one can derive the dissociation tran-

sition matrix element

Tfi � i2�@v
Z 1

0
bdbJ0�qb�S�k; b� (13)

with

S�k; b� � h����
k �r�j	̂�R; r�iZ��1; (14)

where ����
k �r� is an ingoing-wave solution of H0�

���
k �

E����
k at energy E> 0 and k is the corresponding wave

vector. From these expressions, one deduces the dissocia-
tion cross sections.

The usual eikonal approximation is obtained by neglect-
ing H0 � E0 in Eq. (7), i.e., by the replacement

	̂�R; r� ! exp
�
�

i
@

Z Z

�1
�VcT � VfT�dZ

0

�
�0�r� (15)

in Eqs. (10) and (14). Coulomb effects are separated ana-
lytically with the help of the Coulomb phase-shift function
[18,19].

As an application, we study collisions of 11Be on 12C
and 208Pb. The angular-momentum dependent core-
fragment potential Vcf reproduces the bound states and
5=2� resonance of 11Be [12]. The VcT and VfT optical
potentials are taken from the literature [26–28] as de-
scribed in Refs. [11,12]. Hence the calculations presented
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FIG. 1. Ratio of elastic cross section to Rutherford for 11Be
scattering on 12C at 49:3 MeV=nucleon: dynamical eikonal (full
line) and eikonal (dashed line) approximations. Experimental
data are from Ref. [29].

FIG. 2. Ratio of elastic cross section to Rutherford for 11Be
scattering on 208Pb at 20 MeV=nucleon: dynamical eikonal (full
line), eikonal (dashed line), and semiclassical (dotted line)
approximations.

FIG. 3. Differential breakup cross section of 11Be on 208Pb at
69 MeV=nucleon: dynamical eikonal (full line), eikonal (dashed
line), and semiclassical (dotted line) approximations.
Experimental data are from Ref. [30].
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below do not contain any adjustable parameter. Dynamical
eikonal cross sections are calculated with Eqs. (12) and
(13) after solving numerically Eq. (7) with the technique
explained in Ref. [11].

Figure 1 displays elastic cross sections of 11Be on 12C at
49:3 MeV=nucleon as a function of the projectile c.m.
scattering angle �. The full line corresponds to the dynami-
cal eikonal calculation. The agreement with experiment
[29] is quite good. Its quality is identical to that obtained
with the adiabatic approximation [27]. The results from the
usual eikonal approximation (dashed line) are close to
those of the dynamical method. This means that dynamical
effects are weak for this elastic collision. However, the
shapes of the functions S0 defined in Eq. (10) are not
identical for both approximations. Their behavior at large
impact parameters b are quite different. While the eikonal
S0 decreases as a power of 1=b, the dynamical S0 decreases
exponentially. But this does not affect much the elastic
cross section at these high velocities.

Significant dynamical effects at large impact parame-
ters imply an important role of the Coulomb interaction.
As an attempt to amplify this influence, we present in
Fig. 2 a calculation of the elastic scattering of 11Be on
the heavier target 208Pb. We also choose the lower energy
of 20 MeV=nucleon. Here the difference between both
calculations is a little larger but the traditional eikonal
approximation remains surprisingly accurate. It underesti-
mates the elastic cross section by less than 10% over the
considered angular range. The classical relation between
impact parameter and angle on a Coulomb trajectory pro-
vides a semiclassical elastic cross section (dotted line)
where interference effects are missing. This approximation
would be meaningless in Fig. 1 because nuclear effects
dominate.
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Now we turn to breakup calculations, i.e., 11Be disso-
ciation on 208Pb. This breakup is dominated by Coulomb
effects. Differential cross sections have been measured by
Fukuda et al. [30] at 69 MeV=nucleon. The experimental
data correspond to an integration over a domain of relative
energies E of the core and fragment up to 1 MeV. The same
quantity calculated with the three approximations is dis-
played in Fig. 3. Above about 1�, both eikonal approxima-
tions essentially coincide, but they are quite different
below that angle. The purely semiclassical approximation
(dotted line) appears to be fairly valid below 3�. The
agreement of the dynamical eikonal approximation (full
line) with experiment is quite good in view of the fact that
no parameter is adjusted. In particular, the magnitude of
the experimental cross section is very well reproduced. The
theory, however, underestimates the data beyond 4�.
Notice that no correction due to experimental conditions
is included in the theory. At small angles, the traditional
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FIG. 4. Differential breakup cross section of 11Be on 208Pb at
20 MeV=nucleon: dynamical eikonal (full line), eikonal (dashed
line), and semiclassical (dotted line) approximations.
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eikonal method (dashed line) strongly overestimates the
data while the semiclassical approximation tends to zero.
The overestimation is related to the slow decrease of
S�k; b� at large impact parameters. The large b exponential
decrease of the dynamic eikonal approximation is thus
much more realistic.

A similar calculation at 20 MeV=nucleon is displayed in
Fig. 4. Here the results correspond to the single relative
energy E � 0:5 MeV near the maximum of the cross
section integrated over angles. The difference between
both eikonal approximations is larger and remains signifi-
cant up to about 8�. Dynamical effects play a more im-
portant role here. The semiclassical approximation is good
between 1� and 10�.

In summary, the dynamical eikonal method unifies the
semiclassical and eikonal approximations. It improves
time-dependent calculations by taking interference effects
into account and by providing realistic calculations of
differential cross sections. It improves the traditional eiko-
nal method by introducing dynamical effects. This method
opens the way toward more extended applications of time-
dependent codes and should provide a better level of
accuracy by its quantum nature. Applications to elastic
scattering show that the usual eikonal method is good at
high projectile energies. For breakup, however, it is not
valid at small angles and less good than a purely semiclas-
sical approach. The good agreement of the dynamical
method with the data of Ref. [30] is encouraging and
should lead to a deeper understanding of this type of
experiment. Differences and similarities between the ex-
tended and the usual eikonal approximations deserve a
thorough analysis.
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