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Diabatic States from Nodal Structure Conservation
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For a Hamiltonian H�q�, given in a suitable set of basis states, we construct diabatic states from
requiring conservation of their nodal structure. The diabatic states and energies are single-valued
functions for an arbitrary number of parameters q � fq1; q2; . . . ; qfg. The method is illustrated for
nucleons moving in a deformed Woods-Saxon potential.
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Many-body systems like nucleons in nuclei and elec-
trons in atoms, molecules, and clusters are basically de-
scribed in the single-particle approximation, where the
particles (or quasiparticles) move independently in a
(self-consistent) mean potential V. The mean potential
V�q� depends on parameters q � fq1; q2; . . . ; qfg which
denote, e.g., deformation degrees of a nucleus or cluster,
the coordinates of nuclei in a molecule, or the strengths of
external fields acting on the many-body system. The ei-
genstates j��q�i and eigenvalues e��q� of the Hamiltonian
H�q� � T 	 V�q� define the adiabatic basis. Problems
arise when the Schrödinger equation is solved for a time-
dependent potential V�q�t��. Only for small enough veloc-
ities _q�t�, the particles follow the time-dependent potential
adiabatically, i.e., along the adiabatic states (Born-
Oppenheimer approximation). With increasing velocities
_q�t�, however, the particle motion deviates more and more
from adiabaticity, the deviation being caused essentially by
the derivative coupling h��q�jrqj�

0�q�i. In fact, near
points where two adiabatic states come close (quasicross-
ing), the derivative coupling becomes large, because the
(nodal) structures of the wave functions change rapidly.

The elimination of the derivative coupling within a
subset of adiabatic states defines diabatic states which are
smooth as function of q. This transformation replaces the
quasicrossings of adiabatic levels by corresponding cross-
ings of diabatic levels, and hence such diabatic states form
a more convenient basis for treating the time-dependent
Schrödinger equation for V�q�t��. A variety of construction
methods for diabatic states has been introduced [1,2], e.g.,
by diagonalization of the derivative couplings [3,4] or—
starting from some initial point in q space—by revealing
the diabatic states from integration [5] or overlap projec-
tion [6]. A combination of overlap projection and diago-
nalization has been applied as rediagonalization method
for fast rotating nuclei [7].

All these methods are perfect for systems, where differ-
ent quasicrossings of adiabatic states are well separated.
However, in situations where quasicrossings mix with each
other, they become numerically difficult or unreliable.
Stable diagonalization procedures can be used if it is
possible to eliminate parts of the Hamiltonian H�q�, which
are responsible for the repulsions in quasicrossings of
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adiabatic states, like symmetry-breaking terms for the
mean field [8] or residual interactions between many-
body configurations [6]. However, such procedures are
limited to special problems.

In the following, we introduce a novel method which is
based on stable diagonalization procedures for a
Hamiltonian H�q� given by its matrix elements in a suit-
able set of basis states. For the diabatic states j
�q�i we
require (1) that they are eigenstates of a diabatic
Hamiltonian Hd�q�, which is uniquely defined in q space,
and (2) that they conserve their nodal structure while
following the variation of H�q� in an optimal way. The
first requirement is basic to assure one-valued single-
particle energies (i.e., potentials) e
�q� and states j
�q�i
as functions of q. The second requirement is crucial for
diabaticity and, satisfying this via a variational principle
involving H�q� as described below, renders uniqueness to
the definition of diabatic states.

The nodal structure of the wave functions in configura-
tion space r � fx; y; zg is associated with the kinetic energy
operator T. Its separability T � Tx 	 Ty 	 Tz suggests to
determine the diabatic states as product states j
i �
j
x�j
y�j
z�. Here we denote by j
i� the states in the
separate subspaces i � x; y or z, which build the Hilbert
space vectors j
i. If for a certain potential V�q� any of the
symmetry properties with respect to rotation, parity, and
reflection (approximately) applies, the degree of separabil-
ity may be reduced. For example, in case of axial symme-
try of V�q�, T � T�� 	 Tz, and hence j
i � j
���j
z�,
where �;�; z denote cylindrical coordinates.

In the following formulation we consider a twofold
separability, i.e.,

j
�q�i � j
1�q��j
2�q��: (1)

Generalization to arbitrary separability is straightforward.
Modifications for spin-1=2 particles are discussed below.
In analogy to the definition of the adiabatic states from the
variational principle ���h�jH�q� 
 �j�i � 0, we define
the diabatic states (1) from

�
X

1
2

h
1
2jH�q� 
 �j
1
2i � 0 (2)

with some upper limits in the summation as specified
below. Introducing the expansion j
i� � �ni

jni��nij
i� in
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FIG. 1. Adiabatic (solid lines) and diabatic (dashed lines)
proton levels with m� � 1=2	 as functions of deformation
for 224Th.
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terms of basis states jni� in the two subspaces i and
performing the variation with respect to �nij
i�, we obtain
the eigenvalue equationsX

n0
i

��nijhi�q�jn0
i�
 �i�nin0

i
��n0

ij
i� � 0 (3)

for the determination of eigenvalues �
i
and expansion

coefficients �nij
i�. The Hamiltonians hi�q� are deter-
mined by averages from the original Hamiltonian H�q�,

hi�q� � �
jjHj
j� �
1

Nj

XNj


j�1

�
jjHj
j� (4)

with i � j and Nj denoting the number of the lowest states
in energy, which are used for averaging. The diabatic states
j
i� are expected to depend only weakly on Nj � 1.
Reasons are (i) that the separable part Hi of H remains
unchanged while Hj yield only total energy shifts in hi, and
(ii) that the remaining coupling enters into hi after averag-
ing over the mean densities of all Nj states j
j�. This
average density depends only weakly on the number Nj.
Furthermore, an overall scaling of the matrix elements of
hi by some factor would not affect the determination of j
i�
from (3). For a global optimization we choose Ni equal to
the number of diabatic states j
i�, which are needed for
obtaining accurate adiabatic states up to a given energy.
Alternatively, one may choose to average over a subset of
states which, e.g., are involved in certain crossings. This
may lead to a better optimization locally.

Equations (3) and (4) have to be solved iteratively for
j
i� starting, e.g., with the basis states jni�. Finally, the
diabatic energies e
 are defined as the expectation values of
H�q� in the diabatic states j
�q�i, and hence the diabatic
Hamiltonian Hd is given by

Hd�q� �
X



j
ie
h
j with e
�q� � h
jHj
i: (5)

Note that Hd�q� � h1�q� 	 h2�q�.
With this method (1)–(5) we have identified the inter-

action H 
Hd between the diabatic states, which causes
the repulsion between the adiabatic energies. The deriva-
tive coupling

h
jrqj

0i � �
1jrqj


0
1��
2
0

2
	 �
2jrqj


0
2��
1
0

1
(6)

vanishes between most diabatic states 
 and 
0. Some
smooth and small couplings exist only between states
which differ either in 
1 or in 
2, and hence, which never
cross in energy. This part of the derivative coupling is not
removable in our method.

The degree of mixing in the unitary transformation
j
i � ��j�ih�j
i between diabatic and adiabatic states
can be characterized by the spreading width

�
 � 2
��������������������������������������������X
�

�e
 
 e��
2jh�j
ij2

s
(7)

of a diabatic state 
 over the adiabatic states. It should be
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noted that e
 is according to (5) equal to the mean value
��e�jh�j
ij

2. For a Lorentzian shape of jh�j
ij2 and a
dense spectrum, �
 is the full width at half maximum of the
distribution. If �
 is on average small compared to the
mean level spacing D, i.e., �
 � D, the diabatic states are
essentially only pairwise mixed near crossings, such that
the adiabatic energies exhibit just distant quasicrossing. In
the strong-coupling limit �
 > D the diabatic states are
spread over many adiabatic states, such that practically all
quasicrossings are mixed. As known from the study of
chaotic spectra [9] this transition from weak to strong
coupling is rather rapid as function of �
=D.

In the following we illustrate the construction and prop-
erties of global (i.e., globally optimized) diabatic states for
the deformed nucleus with 90 protons and 134 neutrons
(225Th), which is described by a Woods-Saxon potential
[10] with axial and left-right symmetry. As function of the
parameter � the deformation varies from oblate via spheri-
cal to prolate shapes as indicated along the axis in Fig. 1.
There exist good quantum numbers: m for the projection jz
of the total angular momentum j along the symmetry axis
(z axis) of the nucleus, and � for the parity operator P.
Therefore, the matrix of the Hamiltonian H consists of
uncoupled blocks m�. Since the spin-orbit interaction is
strong in nuclei the diabatic states are considered in the
form

j
m�i �
X
ms

j
�;ml � m
ms�j
z�jms�; (8)

where ml;ms denote the projection of angular momentum
and spin along the z axis. The parity of j
z� is given by
��
1�ml . For weak spin-orbit interactions (like in atoms
1-2
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FIG. 2. The average spreading widths �
 of the diabatic proton
(p) and neutron (n) states over the adiabatic states as functions of
the distance R12 between the left and right centers of mass,
R12=2R0 � 0:375	 0:286�	 0:500�4. The mean spreading
widths obtained for the adiabatized diabatic states of Fig. 4 are
given by the lower curves.
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FIG. 3. The adiabatic (thin line) and diabatic (heavy line) mass
parameters as functions of deformation. The line in between
shows the mass parameter calculated for the adiabatized diabatic
states j&i illustrated in Fig. 4.
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and molecules) ml and ms should be considered as inde-
pendent in the definition of diabatic states, and hence
j
;weaki � j
�ml�j
z�jms�. Continuing with the strong-
coupling limit (8) we obtain for (4)

h�ml
�� ��� � �
zmsjHj
zms�;

h�z
z ��� � �
�ml;msjHj
�ml;ms�;

(9)

where the averages are restricted by �
1�ml�z � � and
ml 	ms � m.

For the basis states jn�ml� and jnz�, i.e., deformed
oscillator states in [10], the eigenvalue Eq. (3) readsX

n0�

��n�jh
�ml
�� jn0

�� 
 ����n�n0���n
0
�j
�� � 0;

X
n0z

��nzjh
�z
z jn0

z� 
 �z�nzn0z��n
0
zj
z� � 0

(10)

with fixed ml and �z, respectively. Finally, the diabatic
Hamiltonian is defined by

H�m��
d �

X



j
m�ie
�m��

 h
m�j (11)

with e�m��

 � h
m�jHj
m�i. Since no essential dependence

of the diabatic levels on the number of averaging states has
been observed here, we have used the trace over all states
in (9).

The calculations are carried out in a rather broad range
of deformations, i.e., from extreme oblate to extreme pro-
late shapes. Figure 1 shows the results for m� � 1=2	 .
In large parts of the diagram a remarkable correspondence
between diabatic and adiabatic levels is observed.
Differences are particularly large around � � 0 (spherical
shape), which stem from the strong spin-orbit interaction.

Figure 2 illustrates the mixing of a diabatic state
j
; 1=2	i into adiabatic states j�; 1=2	i by the spreading
width (7) averaged over the 
 states with a Gaussian of
standard deviation 5 MeVaround the Fermi energy. As one
can see from Fig. 2, the spreading width �
 is much larger
than the average spacing of the adiabatic states. Thus,
many adiabatic states (not just the two closest) contribute
to a diabatic one (strong coupling).

To characterize the dependence of the wave functions on
deformation, we consider the mass parameter in the crank-
ing approximation,

M � @
2
X
��0

p� 
 p�0

e�0 
 e�
jh�j@=@qj�0ij2: (12)

Here � � �; 
 for adiabatic and diabatic motion, respec-
tively. The single-particle occupation probabilities p�; p

are given by Fermi functions for T � 0. The derivatives
h
j@=@qj
0i are obtained by inserting (8), using the expan-
sion in terms of the basis states jn�ml� and jnz�z�, and
taking the derivatives of (10).

The deformation dependence of the mass parameters is
shown in Fig. 3. The rapid variations of the adiabatic states
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with deformation, in particular, around quasicrossings, are
responsible for the large fluctuations in the adiabatic mass
parameter. The smoothness of the diabatic states yields
values which are 1 to 2 orders of magnitude smaller than
the adiabatic values.

Our diabatic basis can be applied in various ways. For
example, in certain time-dependent problems, one likes to
know the diabatic motion starting at some initial deforma-
tion q0. This is simply accounted for by expanding the
adiabatic states at q0 in terms of the diabatic states and
1-3
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FIG. 4. The adiabatized diabatic levels (dotted lines) and the
adiabatic energies (solid lines) as functions of deformation for
the adiabatization parameters ) � )0 � 3 MeV.
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keeping the expansion coefficients fixed for all q values
(cf. [8]).

In other applications one is not interested in the diabatic
states, but in approximations which lie in between the
diabatic and the adiabatic limit. Such quasidiabatic states
should keep the diabatic crossings, but approach adiaba-
ticity with respect to states which are well separated in
energy. To construct these quasidiabatic states, one can, for
example, diabatize the adiabatic basis by removing the
level repulsions with the help of the diabatic Hamilton-
ian (5).

Alternatively, starting from the diabatic basis, we also
can construct quasidiabatic states by adiabatization in the
following way. We introduce two steps of diagonalizations,

diag fe
�

0 	H

0 �1
 F

0 �g ���! jki;

ekdiag fNkk0F
0
kk0 g ���! j&i;

(13)

where F

0 ; F0
kk0 are Gaussian cutoff factors in e
 
 e
0 and

ek 
 ek0 with standard deviations ) and )0, respectively.
The operator N � �
j
i
h
j is an artificial construct
which is needed to remove the (small) repulsions created
in the ek’s by the first diagonalization. Here we assume that
the diabatic states 
 are labeled by natural numbers
1; 2; . . . . Finally, the quasidiabatic energies are defined
according to (5) by e& � h&jHj&i. The result of this pro-
cedure is shown in Fig. 4. The quasidiabatic levels are
much closer to the adiabatic ones than the diabatic levels.
Still they are diabatic locally, i.e., near the crossings, where
the quasidiabatic states are governed by some diabatic
components. The mean spreading width of the adiabatized
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states j&i is reduced considerably as illustrated in Fig. 2,
while the mass parameter remains close to the diabatic one
(Fig. 3). The discussion of further refinements of the
method [e.g., averaging in (4) over different sets of diabatic
states], or the description of diabatization procedures of
adiabatic states are beyond the scope of this Letter and will
be reported elsewhere.

In summary, we have introduced a novel method for the
construction of diabatic states, which is based on the
conservation of nodal structure. To a large extent these
diabatic states are free from derivative couplings. Since
only matrix elements of the Hamiltonian are needed, the
method can be used in rather different (also self-consistent)
approaches. The generalization to dissipative systems,
which are described by complex (non-Hermitean)
Hamiltonians (cf. [11–13]), is straightforward. Finally we
conclude that our construction method of diabatic states
can be successfully applied in many fields of chemistry and
physics.
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