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It is proved that there exist subspaces of bipartite tensor product spaces that have no orthonormal bases
that can be perfectly distinguished by means of local operations and classical communication. A corollary
of this fact is that there exist quantum channels having suboptimal classical capacity even when the
receiver may communicate classically with a third party that represents the channel’s environment.
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Introduction.—One of the main goals of the theory of
quantum information in recent years has been to under-
stand the powers and limitations of local operations and
classical communication (LOCC) protocols. These are
protocols wherein two or more physically separated parties
possess the ability to perform arbitrary operations on local
quantum systems and to communicate with one another,
but only classically. The paradigm of LOCC provides a
setting in which to address basic questions about the nature
of entanglement and nonlocality, generally viewed as prin-
cipal characteristics of quantum information.

One particular question along these lines that has been
considered by several researchers is that of LOCC distin-
guishability of sets of states. In the two-party case, the two
parties (Alice and Bob) share one of a known orthogonal
collection of pure states, and their goal is to determine
which of the states it is [1–10]. In some cases it is possible
for Alice and Bob to perform this task without error and in
some it is not. For example, the fundamental result of
Walgate et al. [9] establishes that any two orthogonal
pure states can be distinguished without error. On the other
hand, large sets of maximally entangled states cannot; for
instance, if Alice’s and Bob’s systems each correspond to n
dimensional spaces, then it is impossible for them to
perfectly distinguish n� 1 or more maximally entangled
states [7]. Other examples of sets of orthogonal states that
cannot be perfectly distinguished by LOCC protocols in-
clude those of Ref. [1] and any set of states forming an
unextendable product basis [2]. These examples demon-
strate that entanglement is not an essential feature of
LOCC-indistinguishable sets of states given that these
sets contain only product states.

This Letter considers a related question, which is
whether there exist subspaces of bipartite tensor product
spaces such that no orthonormal basis of the subspace has
the property that its elements can be perfectly distin-
guished by means of an LOCC protocol. Many examples
of LOCC-indistinguishable sets fail to give an example of
such a subspace in that they span subspaces for which one
can easily find a perfectly distinguishable basis. For ex-
ample, the four Bell states are not perfectly distinguishable
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by any LOCC protocol, but the space spanned by these
states obviously does have a perfectly distinguishable ba-
sis—the standard basis. Indeed, every subspace of a tensor
product space A �B for which dim�A� � dim�B� � 2
has a basis whose elements can be perfectly distinguished
by some LOCC protocol, and therefore fails to have the
property we are considering. We prove, however, that if the
dimension of both A and B is at least three, then there do
exist subspaces of A �B with the property that no basis
of the subspace is LOCC distinguishable. In particular, it is
proved that in the case n � dim�A� � dim�B� for n � 3,
the subspace of dimension n2 � 1 that is orthogonal to the
canonical maximally entangled state (or any other fixed
maximally entangled state) has this property.

One motive for investigating this property is to identify
quantum channels having suboptimal classical corrected
capacity with respect to the definition of Hayden and King
[11]. More precisely, Hayden and King considered the
situation in which a sender transmits classical information
over a quantum channel to a receiver, who has the added
capability to measure the environment and use the result to
correct the channel’s output. This notion of correcting the
output of a quantum channel by measuring the environ-
ment was considered earlier by Gregoratti and Werner
[12], who focused primarily on the quantum capacity of
such channels. Based on the result of Walgate et al. [9],
Hayden and King proved that the classical corrected ca-
pacity of any quantum channel is at least 1 bit of informa-
tion. Many natural examples of channels can easily be seen
to, in fact, have optimal classical corrected capacity, mean-
ing that the capacity is log2n for n the dimension of the
input space, and no examples of channels were previously
proved to have less than optimal classical corrected ca-
pacity. The existence of subspaces having no LOCC-
distinguishable bases implies the existence of such chan-
nels, even if the definition of Hayden and King is extended
to allow two-way communication between the receiver and
the environment.

Preliminaries.—Standard mathematical notation rather
than Dirac notation is used to represent vectors and linear
mappings in this Letter. All vector spaces discussed are
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assumed to be finite dimensional complex vector spaces.
The standard basis of a vector space X of the form X �
Cn is fe1; . . . ; eng, where ei is the elementary unit vector
defined by ei
j� � �ij. The space of linear mappings from
a space Y to a space X is denoted L�Y;X�, and we write
L�X� as shorthand for L�X;X� and X� as shorthand for
L�X;C�. If X � Cn and Y � Cm, then elements of X are
identified with n dimensional column vectors, elements of
X� are identified with n dimensional row vectors, and
elements of L�Y;X� are identified with n
m matrices
in the typical way. For x 2 X we let �x 2 X and xT; x� 2
X� denote the entrywise complex conjugate, transpose,
and conjugate transpose of x, and similar for linear map-
pings; �X 2 L�Y;X� and XT; X� 2 L�X;Y� denote the
entrywise complex conjugate, transpose, and conjugate
transpose of X 2 L�Y;X�. The usual inner products on
X and L�Y;X� are given by hx; yi � x�y and hX; Yi �
tr�X�Y� for x; y 2 X and X; Y 2 L�Y;X�. The standard
basis of the space L�Y;X� consists of the mappings Ei;j �
eie�j for 1 � i � n and 1 � j � m.

The identity operator acting on a given space X is
denoted IX, or just as I when X is implicit or otherwise
understood. It is sometimes helpful to give different names
to distinct but otherwise identical spaces; in particular, we
assume that A � Cn and B � Cn are vector spaces refer-
ring to Alice’s and Bob’s systems, respectively. We define
IB;A 2 L�B;A� to be the linear mapping that identifies
vectors in A with vectors in B by identifying the standard
bases of these spaces. Often this mapping is used implic-
itly. For instance, if a 2 A and b 2 B then ha; bi is
shorthand for ha; IB;Abi, and when X 2 L�A;B� we
write tr�X� to mean tr�IB;AX�.

It is convenient when discussing bipartite quantum states
to define a linear bijection vec: L�Y;X� ! X �Y by the
action vec�Ei;j� � ei � ej on standard basis elements, ex-
tending by linearity. For any choice of linear mappings A,
X, and B the equation

�A � BT� vec�X� � vec�AXB�

is satisfied. For A � Cn and B � Cn, the unit vector

1���
n

p vec�IB;A� �
1���
n

p
Xn
i�1

ei � ei 2 A �B

represents the canonical maximally entangled pure state in
the space A �B. Let P 2 L�A �B� represent the pro-
jection onto the space spanned by this vector,

P �
1

n
vec�IB;A� vec�IB;A��;

and let Q 2 L�A �B� denote the projection onto the
orthogonal complement of this space, Q � IA�B � P.
Also let P and Q denote the subspaces of A �B onto
which P and Q project.

Separable measurements and LOCC state discrimina-
tion.—A separable measurement on A �B with possible
outcomes f1; . . . ; Ng is a positive operator valued measure
described by a collection fAi � Bi: i � 1; . . . ; Ng �
08050
L�A �B� where each Ai and Bi is positive semidefinite.
If we have that each of the operators Ai and Bi has rank
equal to one, we will say that the measurement is a rank
one separable measurement. If u1; . . . ; um 2 A �B is a
collection of unit vectors, then the separable measurement
fAi � Bi: i � 1; . . . ; Ng is said to perfectly distinguish this
collection of vectors if there exists a partition S1 [ � � � [
Sm � f1; . . . ; Ng, Sk \ Sl � [ for k � l, such that

u�k

�X
i2Sl

Ai � Bi

�
uk � �kl

for 1 � k; l � m.
Any measurement that can be realized by means of an

LOCC protocol can be described by a rank one separable
measurement, which implies that the following proposition
holds.

Proposition 1. If Alice and Bob can perfectly distinguish
the states u1; . . . ; um by means of an LOCC protocol, then
there exists a rank one separable measurement faia

�
i �

bib
�
i : i � 1; . . . ; Ng that perfectly distinguishes u1; . . . ; um.

The converse of this proposition does not hold—see
Refs. [1,13] for further information.

It will be helpful below in the proof of the main result to
have noted a simple fact concerning rank one separable
measurements. Assume faia�i � �bibTi : i � 1; . . . ; Ng de-
scribes such a measurement. Then �Ni�1aia

�
i �

�bibTi �
IA�B, and thus

vec �IB;A� �

�XN
i�1

aia�i � �bibTi

�
vec�IB;A�

� vec
�XN
i�1

aia
�
i bib

�
i

�
� vec

�XN
i�1

hai; biiaib
�
i

�
:

It therefore holds that �Ni�1hai; biiaib
�
i � IB;A. Taking the

trace of both sides yields �Ni�1jhai; biij
2 � n.

The main theorem.—We are now ready to prove the
main result, which is stated in the following theorem.

Theorem 2. For n � 3, there is no basis of Q that is
perfectly distinguishable by an LOCC protocol.

Proof.—The proof is by contradiction. To this end,
assume fu1; . . . ; umg is an orthonormal basis of Q whose
elements are perfectly distinguished by some LOCC pro-
tocol. Then there exists a rank one separable measure-
ment faia�i � �bibTi : i � 1; . . . ; Ng together with a partition
S1 [ � � � [ Sm � f1; . . . ; Ng, Sk \ Sl � [ for k � l, such
that

u�k

�X
i2Sl

aia
�
i �

�bib
T
i

�
uk � �kl

for all 1 � k; l � m. Without loss of generality it may be
assumed that ai � �bi and aj � �bj are linearly independent
for every choice of i � j.

As u�k�aia
�
i �

�bibTi �uk � jhuk; ai � �biij2, it follows that
uk and ai � �bi are orthogonal whenever i =2 Sk. Conse-
quently, it holds that u�k�aia

�
i �

�bib
T
i �ul � 0 for k � l,

given that Sk and Sl are disjoint. The projection Q acts
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trivially on each of the vectors u1; . . . ; um, and thus
u�kQ�aia

�
i �

�bib
T
i � Qul � 0 for k � l. Letting v �

1��
n

p vec�IB;A� we have Qv � 0, and thus u�kQ�aia
�
i �

�bibTi � Qv � v�Q�aia�i � �bibTi � Quk � 0 for each choice
of k as well. It has been shown that the orthonormal basis
fu1; . . . ; um; vg of A �B diagonalizes each of the opera-
tors Q�aia�i � �bibTi �Q, for 1 � i � N. As these operators
are all simultaneously diagonalized by a common ortho-
normal basis, they must commute. To establish a contra-
diction completing the proof, it will therefore suffice to
prove that there exists at least one choice of i � j such that
Q�aia

�
i �

�bib
T
i �Q and Q�aja�j � �bjb

T
j �Q do not commute.

Let �i;j � �a�i � b
T
i �Q�aj � �bj� for all i, j. It will first be

proved that there exists a choice of i � j such that �i;j � 0.
In order to prove this, assume toward contradiction that
�i;j � 0 for every pair i � j. As

�i;j � �a�i � b
T
i �Q�aj � �bj�

� hai; ajihbj; bii �
1

n
hai; biihbj; aji;

this implies

hai; ajihbj; bii �
1

n
hai; biihbj; aji

for all choices of i � j. Because �ijhai; biij
2 � n > 0, we

may choose some value of i for which hai; bii � 0. We then
have

hai; bii � a�i

�X
j

haj; bjiajb�j

�
bi

�
X
j

haj; bjihai; ajihbj; bii

�
X
j�i

haj; bjihai; ajihbj; bii � hai; biikaik
2kbik

2

�
1

n

X
j�i

haj; bjihai; biihbj; aji � hai; biikaik2kbik2

�

�
1�

1

n
jhai; biij

2 � kaik
2kbik

2

�
hai; bii:

As hai; bii � 0 this implies 1
n jhai; biij

2 � kaik
2kbik

2. But
then by the Cauchy-Schwarz inequality we have

jhai; biij2 � kaik2kbik2 �
1

n
jhai; biij2;

which implies jhai; biij2 � 0. This contradicts the fact that
i was chosen so that hai; bii � 0, and so it has been proved
that �i;j � 0 for some choice of i � j. Fix such a choice
for the remainder of the proof.

Next, let us prove that the two vectors Q�ai � �bj� and
Q�aj � �bj� are linearly independent. To this end let � and
� be scalars that satisfy �Q�ai � �bi� � �Q�aj � �bj� � 0.
This implies

�ai� �bi��aj� �bj�
1

n
��hbi;aii��hbj;aji�vec�IB;A�;

or equivalently
08050
�aib�i � �ajb
�
j �

1

n
��hbi; aii � �hbj; aji�IB;A:

The left hand side of this equation has rank at most 2.
Because we are assuming that n � 3, this means that the
right hand side must be 0, for otherwise it would have rank
n � 3. Thus �aib�i � �ajb

�
j � 0, which is equivalent to

�ai � �bi � �aj � �bj � 0. As ai � �bi and aj � �bj are nec-
essarily linearly independent, however, this implies that
� � � � 0. Consequently, Q�ai � �bi� and Q�aj � �bj� are
linearly independent.

Finally, we will prove that the operators

Q�aia
�
i �

�bib
T
i �Q�aja

�
j �

�bjb
T
j �Q � �i;jQ�ai � �bi�


 �a�j � b
T
j �Q

and

Q�aja
�
j �

�bjb
T
j �Q�aia

�
i �

�bib
T
i �Q � ��i;jQ�aj � �bj�


 �a�i � b
T
i �Q

are not equal, which is equivalent to proving that Q�aia�i �
�bib

T
i �Q and Q�aja�j � �bjb

T
j �Q do not commute. Because

�i;j � 0 and the vectors Q�ai � �bi� and Q�aj � �bj� are
nonzero (as they are linearly independent), neither of these
operators is 0. The images of the two operators are there-
fore the spaces spanned by the vectors Q�ai � �bi� and
Q�aj � �bj�, respectively. The linear independence of
Q�ai � �bi� and Q�aj � �bj� therefore implies that the two
operators are not equal, which completes the proof.

It should be noted that the assumption n � 3 in
Theorem 2 is necessary. Indeed, every subspace of a tensor
product space A �B where A � C2 and B � C2 has a
perfectly distinguishable basis. To see this, let V be a
subspace of A �B and letm � dim�V �. There is nothing
to prove for m � 0 or m � 1, the claim for m � 2 follows
from Walgate et al. [9], and it is trivial for m � 4. In the
remaining case,m � 3, it must be that V is the orthogonal
complement of some unit vector u 2 A �B. By consid-
ering the Schmidt decomposition of a given u, it is straight-
forward to find two product states a1 � b1 and a2 � b2 so
that the set fu; a1 � b1; a2 � b2g is orthonormal. Letting v
be any vector orthogonal to the span of fu; a1 � b1; a2 �
b2g, we have that fv; a1 � b1; a2 � b2g is an orthonormal
basis of V . Walgate and Hardy [8] have shown that any
such set is perfectly distinguishable given that at least two
members of the set are product states.

Channels with suboptimal classical corrected ca-
pacity.—Hayden and King [11] considered the classical
capacity of quantum channels when the receiver has the
capability to measure the channel’s environment and to use
the classical result of this measurement when measuring
the output of the channel. We now give examples of
channels that have suboptimal capacity with respect to
this definition. In fact, the capacity of the channels remains
suboptimal even when two-way communication is allowed
between the receiver and the environment.
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As our aim is to prove only the existence of channels
with suboptimal classical corrected capacity rather than
proving quantitative bounds on this capacity, we will use
the following qualitative definition that does not refer to
any specific measure of capacity. An admissible (i.e.,
completely positive and trace-preserving) mapping
�: L�X� ! L�A� is said to have optimal two-way classi-
cal corrected capacity if the following holds. (i) There
exists a space B and a unitary embedding U 2 L�X;A �
B� such that ��X� � trBUXU

� for all X 2 L�X�, and
(ii) there exists an orthonormal basis fx1; . . . ; xng of X
such that the set Ux1; . . . ; Uxn 2 A �B is perfectly dis-
tinguishable by some LOCC protocol.

By the Stinespring dilation theorem, the collection of all
choices for the unitary embedding U in item (i) are equiva-
lent up to a unitary operator on B, and consequently a
given mapping � fails to have optimal two-way classical
corrected capacity if item (ii) fails to hold for even a single
choice of U.

The admissible mappings that fail to satisfy the above
definition of optimality are based on the subspaces consid-
ered previously. Let n � 3, let X � Cn

2�1, and let A �
B � Cn. Choose u1; . . . ; un2�1 2 A �B to be an arbi-
trary orthonormal basis for the subspace Q of A �B.
Define U 2 L�X;A �B� as

U �
Xn2�1

i�1

uie�i :

This is a unitary embedding, implying that the mapping
� 2 L�X� ! L�A� defined by ��X� � trBUXU� for all
X 2 L�X� is admissible.

If � had optimal two-way classical corrected capacity,
there would exist a choice of an orthonormal basis
fx1; . . . ; xn2�1g of X such that Ux1; . . . ; Uxn2�1 2
A �B is perfectly distinguishable by an LOCC protocol.
As any such set is necessarily an orthonormal basis of Q,
this cannot be by Theorem 2. We have therefore proved the
following corollary.

Corollary 4. The mapping � does not have optimal two-
way classical corrected capacity.

It is, of course, simple to adjust the above example to
give a channel where the input and output spaces have the
same dimension by viewing that the receiver’s space A is
embedded in X. One may therefore view the example
above for n � 3 as giving a three-qubit channel having
suboptimal two-way classical corrected capacity.

Conclusion.—In this Letter it has been proved that there
exist subspaces of bipartite tensor product spaces having
no orthonormal bases whose elements can be perfectly
distinguished by means of LOCC protocols. The existence
of such subspaces gives a strong illustration of the limita-
tions that face physically separated observers that measure
composite systems—even given the freedom to preselect
08050
an orthonormal basis of such a subspace and to communi-
cate classically during the measurement process, it may be
impossible for separated observers to distinguish the states
that form the basis. Previously this was known only for
fixed collections of states rather than for arbitrary bases of
a given subspace. An implication of the existence of such
subspaces to channel capacities was also discussed.
Specifically, channels having suboptimal classical cor-
rected capacity, which were not previously known to exist,
were constructed based on these subspaces.

There are several interesting, unanswered questions re-
lating to subspaces having no LOCC-distinguishable
bases. For instance, can such subspaces exist for a bipartite
system in which one of the systems is a two-level system?
As has been observed above, this would forbid the second
system from also being a two-level system. Another ques-
tion is ’’What is the minimum possible dimension of such
subspaces?’’ The dimension must be at least 3, following
from Walgate et al. [9], while the smallest dimension
achieved in this Letter is 8. Finally, what sorts of quantita-
tive bounds can be proved on the classical corrected ca-
pacity of quantum channels?
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