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We propose a new approach to quantum phase gates via the adiabatic evolution. The conditional phase
shift is neither of dynamical nor geometric origin. It arises from the adiabatic evolution of the dark state
itself. Taking advantage of the adiabatic passage, this kind of quantum logic gates is robust against
moderate fluctuations of experimental parameters. In comparison with the geometric phase gates, it is
unnecessary to drive the system to undergo a desired cyclic evolution to obtain a desired solid angle. Thus,
the procedure is simplified, and the fidelity may be further improved since the errors in obtaining the
required solid angle are avoided. We illustrate such a kind of quantum logic gates in the ion trap system.
The idea can also be realized in other systems, opening a new perspective for quantum information
processing.
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Recently, much attention has been paid to quantum
computers, which are based on the fundamental quantum
mechanical principle and can provide more powerful com-
putational ability than the classical computers [1]. Shor [2]
has shown that the problem of factorizing a large integer,
which is the basis of the security of many cryptographic
systems and takes exponentially increasing time on a clas-
sical computer, can be solved in polynomial time using a
quantum computer. Moreover, Grover [3] has discovered a
quantum mechanical algorithm for searching for an item
from a disordered system that is polynomially faster than
any classical algorithm. Because of these advantages many
efforts have been devoted to the implementation of prac-
tical quantum information processors.

It has been shown [4] that the building blocks of quan-
tum computers are two-quantum-bit (qubit) gates. So far,
two kinds of two-qubit phase gates have been proposed.
One is based on the conditional dynamical phase shift [4–
6]. The other is based on the geometric operation: driving
the qubits to undergo appropriate cyclic evolutions condi-
tional on the state of the qubits to acquire the geometric
phase. In comparison with the dynamical gates, geometric
phase gates have practical advantages since they are resil-
ient to certain small errors. Schemes have been proposed to
construct adiabatic geometric gates using NMR [7], super-
conducting nanocircuits [8], and trapped ions [9].

In this Letter, we propose a new class of quantum phase
gates via the adiabatic evolution. Unlike normal dynamical
and geometric phase gates, neither does the qubit system
undergo any dynamical phase shift since it works in the
dark space nor does the Hamiltonian need to change along
the suitable loop involving a required solid angle. Thus, the
conditional phase is of neither dynamical nor geometric
origin. It arises from the adiabatic evolution of the dark
eigenstate itself under certain conditions. To our best
knowledge, this is the first scheme for quantum logic gates
by using the adiabatic evolution of the dark eigenstate itself
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without forcing the system to evolve along a suitable cyclic
loop in the parameter space to obtain the required solid
angle. This kind of quantum logic gates are robust against
moderate fluctuations of experimental parameters by using
the adiabatic passage [10]. In comparison with the geo-
metric phase gate, it does not require the parameters to
sweep a required solid angle, and thus the procedure is
simplified and the errors in obtaining the required solid
angle are avoided. The idea may open a new perspective
for quantum computation.

Consider a two-particle system. The particles have four
states jei, jgi, je0i, and jg0i. The quantum information of
the first qubit is encoded on the states je1i and jg1i, while
the quantum information of the second qubit is encoded on
jg2i and jg02i. The two qubits are coupled to a third sub-
system, whose states are denoted by j0i and j1i. The
operation procedure is divided into two parts. During the
first stage, the coupling between the two qubits is governed
by the Hamiltonian

H1 � �1je10ihg11j � �2je20ihg21j � �3je
0
20ihg

0
21j

� H:c:; (1)

where je2i and je02i are two auxiliary states of the sec-
ond particle. In the subspace fje1ijg2ij0i; jg1ije2ij0i;
jg1ijg2ij1ig the dark state is

jD1i � cos�je1ijg2ij0i � sin�jg1ije2ij0i; (2)

where

cos� �
�2�����������������

�1 � �2
2

q ; (3)

sin� �
�1�����������������

�2
1 � �2

2

q : (4)
2-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.080502


PRL 95, 080502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
19 AUGUST 2005
On the other hand, in the subspace fje1ijg
0
2ij0i;

jg1ije02ij0i; jg1ijg
0
2ij1ig the dark state is

jD01i � cos�0je1ijg02ij0i � sin�0jg1ije02ij0i; (5)

where

cos�0 �
�3�����������������

�2
1 � �2

3

q ; (6)

sin�0 �
�1�����������������

�2
1 � �2

3

q : (7)

We adiabatically vary � and �0 from 0 to 
=2, and thus the
state je1ijg2ij0i adiabatically evolves to jg1ije2ij0i accord-
ing to Eq. (2), while je1ijg02ij0i adiabatically evolves to
jg1ije

0
2ij0i according to Eq. (5).

During the second stage, the evolution of the system is
governed by the Hamiltonian

H2 � �1je10ihg11j � �2je20ihg21j � �3je
0
20ihg

0
21j � H:c:

(8)

In this case the dark state in the subspace fje1ijg2ij0i;
jg1ije2ij0i; jg1ijg2ij1ig is again given by Eq. (2), while
the dark state in the subspace fje1ijg02ij0i; jg1ije

0
2ij0i;

jg1ijg02ij1ig is

jD02i � � cos�0je1ijg
0
2ij0i � sin�0jg1ije

0
2ij0i: (9)

We now adiabatically vary � and �0 from 
=2 to 0. Then
jg1ije2ij0i adiabatically evolves to je1ijg2ij0i according to
Eq. (2), while jg1ije02ij0i to �je1ijg02ij0i according to
Eq. (9). During the two stages the dark state in the first
subspace evolves along the same path and finally returns to
the initial state without undergoing any phase change,
while the dark state in the second subspace evolves along
the difference path due to a different setting of coupling
between je020i and jg021i, which produces a conditional
phase shift. Since no solid angle is swept in the parametric
space, no Berry geometric phase [11] is involved. On the
other hand, the states jg1ijg2ij0i; jg1ijg02ij0i are not af-
fected by H1 and H2. This leads to

jg1ijg2i ���! jg1ijg2i; jg1ijg02i ���! jg1ijg02i;
je1ijg2i ���! je1ijg2i; je1ijg

0
2i ���! �je1ijg02i:

(10)

This transformation corresponds to the phase gate between
the two qubits. Neither does the conditional phase shift
result from the eigenenergy dependent dynamical phase
nor does it result from the Berry phase during the evolu-
tion. It comes from the evolution of the dark state itself.

We now show how we can adiabatically vary � and �0

and how the adiabatic passage plays its role in order to
improve the gate fidelity. Initially we switch on the cou-
plings je20i !jg21i and je020i !jg

0
21i. At this moment,

the coupling je10i !jg11i is off and thus �1 � 0, which
means that � � �0 � 0. We then adiabatically increase the
08050
coupling je10i !jg11i and decrease the couplings
je20i !jg21i and je020i !jg

0
21i until they are switched

off, and thus �2 � �3 � 0, changing � and �0 to 
=2.
Finally, we adiabatically increase the couplings
je20i !jg21i and je020i !jg

0
21i and decrease the cou-

pling je10i !jg11i until it is switched off, and thus �1 �
0, varying � and �0 back to 0. We note that the operation is
insensitive to fluctuations of the experimental parameters.
For example, suppose that we expect �1 to be �e at the end
of the first stage. Because of the fluctuation it is actually
�e � ��e. At this moment the couplings je20i !jg21i
and je020i !jg

0
21i are switched off, and thus the condition

� � �0 � 
=2 is still satisfied according to Eqs. (3), (4),
(6), and (7). Therefore, the state evolution is not affected.
In the following we illustrate the idea in the ion trap
system, but it should be applicable to other systems since
what is required is that the parameters of the Hamiltonian
are adiabatically varied. For example, the conditional adia-
batic evolution has been experimentally demonstrated in
NMR [7].

We consider N ions confined in a linear trap. We show
how we can perform the new kind of conditional phase
shift between two ions. Assume the ions have two excited
states jei and je0i and two electronic ground states jgi and
jg0i. The quantum information of the first ion is stored in
jei and jgi, while the quantum information of the second
ion is stored in jgi and jg0i. We drive the transition jgi !
jei for each ion with a traveling-wave laser beam with the
frequency equal to !0 � �, where !0 is the transition
frequency between the states jgi and jei and � is the
frequency of the center-of-mass vibrational mode.
Meanwhile, we drive the transition jg0i ! je0i for the
second ion with a traveling-wave laser beam with the
frequency equal to !00 � �, where !00 is the transition
frequency between the states jg0i and je0i. In the resolved
sideband limit, where the vibrational frequency � is much
larger than other characteristic frequencies of the problem,
the interaction of the ion with the laser can be treated by
using a nonlinear Jaynes-Cummings model [12]. In this
case the Hamiltonian for such a system, in the interaction
picture, is given by

H�e�
2=2�1e�i�1

X1
j�0

i�2j�1

j!�2
ayjaj�1je1ihg1j

�e�
2=2�2e�i�2

X1
j�0

i�2j�1

j!j�1�!
ayjaj�1je2ihg2j

�e�
2=2�3e�i�3

X1
j�0

i�2j�1

j!j�1�!
ayjaj�1je02ihg

0
2j�H:c:;

(11)

where ay and a are the creation and annihilation operators
for the collective vibrational mode, �l and �l (l � 1; 2; 3)
is the Rabi frequency and phase of the lth laser, and  is the
Lamb-Dicke parameter. Define the excitation number op-
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erator

Ne �
X2
j�1

jejihejj �
X2
j�1

je0jihe
0
jj � aya: (12)

The interaction Hamiltonian commutes with Ne, and thus
the excitation number conserves during the evolution. If
the vibrational mode is initially in the vacuum state j0i, it
remains in the subspace fj0i; j1ig during the interaction.
This is due to the fact that the quantum information of the
second ion is encoded on the two ground states, and thus
the total excitation number of the whole system does not
exceed 1. In this case the Hamiltonian reduces to

H � ie�
2=2�1e

�i�1 je10ihg11j

� ie�
2=2�2e

�i�2 je20ihg21j

� ie�
2=2�3e

�i�3 je020ihg
0
21j � H:c: (13)

We divide the evolution time into two parts. During the
first stage, we choose �1 � 
=2 and �2 � �3 � 3
=2.
Then the Hamiltonian has the same form of Eq. (1) with
�l � e�

2=2�l. The collective vibrational mode acts as
the third subsystem, and the laser fields couple the two
qubits to the vibrational mode. The corresponding dark
states are given by Eqs. (2) and (5). We adiabatically
increase � and �0 from 0 to 
=2 by adjusting the Rabi
frequencies of the laser fields, leading to the evolution
je1ijg2ij0i ! jg1ije2ij0i and je1ijg

0
2ij0i ! jg1ije

0
2ij0i.

During the second stage, we choose �1 � �3 � 
=2 and
�2 � 3
=2. In this case the Hamiltonian has the same
form of Eq. (8), with the corresponding dark states given
by Eqs. (2) and (9). We now adiabatically vary � and �0

from 
=2 to 0, leading to jg1ije2ij0i ! je1ijg2ij0i and
jg1ije

0
2ij0i ! �je1ijg

0
2ij0i. In this way, we obtain the

phase gate of Eq. (10) between the two ions.
The dynamical phase gates between two trapped ions via

resonant sideband excitations have been proposed [13] and
experimentally demonstrated [14]. In comparison with the
dynamical proposal, the operation here is insensitive to
small changes of experimental parameters by using the
adiabatic passage [10]. Therefore, the gate fidelity can be
greatly improved. Another advantage of the scheme is that
it works beyond the Lamb-Dicke regime. Furthermore, the
present scheme does not use the vibrational mode as the
memory. It is unnecessary to transfer the quantum state of
one ion to the vibrational mode, and then transfer back to
the ion after the conditional phase shift. The vibrational
mode is unexcited throughout the procedure.

According to the experiments of the Innsbruck group
[14,15], two Zeeman levels of the S1=2 ground state of
40Ca� ions can act as two ground states, while two
Zeeman levels of the metastable D5=2 state can act as the
excited states. The lifetime of the metastable state is very
long, and thus the spontaneous emission is negligible. For
the setup of the NIST group, one can use the Raman
08050
transitions between two pairs of the hyperfine S1=2 ground
states of 9Be� ions through virtual excited states to sup-
press the spontaneous emission [16].

We now give a quantitative analysis of the experimental
implementation. First, the second and third laser fields are
switched on and the first laser is off, and thus � � �0 � 0.
We then adiabatically increase �1 and decrease �2 and �3

until the second and third laser fields are switched off,
resulting in � � �0 � 
=2. Finally, we adiabatically in-
crease �2 and �3 and decrease �1 until the first laser field
is switched off, leading to � � �0 � 0. By this way we
adiabatically vary � from 0 to 
=2 during the first stage
and 
=2 to 0 during the second stage. Suppose that we
expect �1 to be 0:1� at the end of the first stage. Because
of the error it may be 0:11� or 0:09� instead of 0:1�.
However, at this moment the second and third laser fields
are switched off and thus � and �0 are still changed to 
=2.
Thus the operation is insensitive to fluctuations of the
experimental parameters, which are the main source of
gate error in the recent experiment [14]. Since the errors
arising from the fluctuations of experimental parameters
are suppressed by taking advantage of the adiabatic pas-
sage, the main error sources are the residual thermal exci-
tation, addressing errors, and off-resonant excitations,
which are about 2%, 3%, and 4% in the experiment of
Ref. [14]. Technical improvements such as the improved
control of the addressing beam will increase the fidelity. It
should be noted that here we just illustrate the new kind of
phase gates in the ion trap system. This kind of phase gates
are also realizable in other physical systems.

In conclusion, we have presented a new class of two-
qubit quantum phase gates. This new kind of phase gates
does not depend on the dynamical phase shift since they
work in the dark space. Neither is the phase of geometric
origin. The conditional phase shift is achieved by the
adiabatic evolution of the dark state itself. This kind of
phase gates has the advantage of being insensitive to small
fluctuations of experimental parameters. In comparison
with the adiabatic geometric gates, the nontrivial cyclic
loop is unnecessary, and thus the errors in obtaining the
required solid angle are avoided, which makes this new
kind of phase gates superior to the geometric gates. We
illustrate the idea in the ion trap system. However, it can
also be realized in other systems. The idea opens a new
prospect for realizing high-fidelity phase gates in various
physical systems.
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