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Casimir Zero-Point Radiation Pressure
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We analyze some consequences of the Casimir-type zero-point radiation pressure. These include
macroscopic ‘‘vacuum’’ forces on a metallic layer in between a dielectric medium and an inert [��!� � 1]
one. Ways to control the sign of these forces, based on dielectric properties of the media, are thus
suggested. Finally, the large positive Casimir pressure, due to surface plasmons on thin metallic layers, is
evaluated and discussed.
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Imagine polarizable bodies that are placed in vacuum.
Their interaction with the electromagnetic field (which can
often be described by boundary conditions on the latter at
the surfaces of the bodies) may produce a change in the
zero-point energy of the field. Should that energy depend
on, for example, the distance between two of these bodies,
forces between these two bodies will follow. This can be
regarded as the origin of the van der Waals molecular
forces [1], which change at large separations due to retar-
dation effects [2]. For the simpler case of two large parallel
conducting plates, the Casimir force [3] [cf. Eq. (4) below]
results at large separations (where retardation is important)
between the plates and becomes the Lifshitz force [4,5] at
small separations (where quasistationarity applies). The
crossover between the short- and long-distance behaviors
occurs for distances on the order of the velocity of light
divided by the characteristic excitation frequency of the
bodies (i.e., about 200 A for @! � 10 eV). Even for a
single body, volume- and shape-dependent [6] forces will
arise when the field energy depends on these parameters.
The Casimir force has by now been amply confirmed by
experiment [7]. Corrections due to finite temperatures,
realistic surfaces, etc., are becoming relevant [8]. The
Casimir effect may be crucial to nanomechanical devices
[9]. Its relevance is not limited to the electromagnetic field
only. It should exist with any physical field that interacts
with matter.

Besides its general interest vis-à-vis the observability of
the (changes of the) vacuum energy [10] and genuine
relevance to molecular and colloidal forces, the Casimir
effect touches upon several fundamental questions of phys-
ics. These range from ‘‘vacuum friction’’ to the value of the
cosmological constant and the modifications of classical
Newtonian gravitation on small scales. The reader is re-
ferred to several books and review articles, which discuss
the many aspects of the Casimir effect [11–16].

A problem of principle, which arises in the calculation
of Casimir-type forces, is the well-known UV divergence
of the electromagnetic vacuum energy. This divergence is
clearly physically irrelevant here, since what matters are
only the differences of energies. For a good discussion of
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the cutoff procedure, see [17]. Ordinary metals are basi-
cally transparent at high frequencies, above the character-
istic plasma frequency !p, which is therefore a natural
cutoff. It is clear that waves with ! � !p do not ‘‘see’’ the
bodies and therefore are irrelevant. In his original calcu-
lation, Casimir in fact first employed a soft cutoff as above
and then made a judicious subtraction of a large energy to
obtain a finite, universal, and cutoff-independent result.
This subtraction procedure is rather tricky. While various
physical interpretations for it have been suggested in the
literature, none of them is truly satisfactory. We shall start
by physically analyzing Casimir’s subtraction procedure.
Before that, we remark that cutoff dependence can be
allowed when the cutoff is based on physical considera-
tions. For example, the Lifshitz forces in the static limit do
depend on the cutoff !p, where !p is the plasma frequency
of the metals. Another example of cutoff dependence will
be discussed in this Letter.

In 1948, Casimir [3] considered the force between two
large metallic plates placed parallel to the x-y plane, with a
distance d along the z axis between their internal faces, and
d � c=!p. The zero-point energy of the field between the
plates is

E0�d� � @c
L2

�2

Z �c�
d2k?

X1
�0�

�
n2

�2

d2
� k2?

�
1=2

; (1)

where
R
�c� means that the integrand is multiplied by a soft

cutoff function which vanishes smoothly around and above
jkpj � !p=c, and

P
1
�0� means that the n � 0 term is multi-

plied by 1=2. The corresponding subtracted quantity is

E0
0�d� � E0�d� 
 subtraction: (2)

The force between the plates is given by
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where positive F means repulsion between the plates.
Casimir chose to subtract in Eq. (2) the same expression
but with the sum over n converted to an integral, as
appropriate for very large d. Thus, the subtraction is that
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of the energy for the plates ‘‘at infinity’’ (questions such as
whether the plates have a finite thickness and, if so, what
happens beyond them are left open). Evaluating the differ-
ence between the sum and the integral over n with the
Euler-Maclaurin formula, he arrived at the following cele-
brated result:

Pc � F=L2 � 
@c
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: (4)

For the unretarded, quasistationary limit, d � c=!p, a
length �c=!p replaces one power of d in the denominator
of Eq. (4), as found by Lifshitz [4].

A clear physical justification for the subtraction proce-
dure is clearly called for. It is immediately suggested [18–
20] (and in fact hinted in Casimir’s original paper; see also
Ref. [3] of [19]) that the physical significance of the above
subtraction is in obtaining the difference between the
radiation pressures of the zero-point fields between the
plates and outside of the plates. This idea was advocated
and followed up in Refs. [18,19]. The purpose of the
present Letter is to analyze some new consequences of
this interpretation of the subtraction. Neither it nor the
other regularization procedures are truly satisfactory.
Therefore, it is of interest to compare the new results
following from this interpretation of the subtraction pro-
cedure with experiments to come.

We follow Refs. [18,19] in calculating the pressure of
the zero-point electromagnetic field, but here we present a
somewhat different derivation. We take a large vessel [21]
with conducting walls. The vessel is taken to be a box with
dimensions Lx; Ly; Lz, V  LxLyLz. The pressure in the z
direction is given by the momentum imparted to the wall
per unit area per unit time [19]:

P0 � @
X�c�

kx;ky;kz

c�k�
k2z
k
=V; (5)

where kx � nx�=Lx, with nx > 0, etc., and c�k� is the light
(group) velocity (d!k=dk) as a function of k ���������������������������
k2x � k2x � k2z

q
, slightly generalizing the result of

Ref. [19]. The symbol �c� above the summation sign
signifies an upper cutoff around the plasma frequency of
the walls, necessary to control the divergence, as discussed
above. To derive this result, one may calculate [22]

�@=LyLx��@!k=@Lz� � �@c�k�k2z�=kV and sum over the
levels, canceling the factor of 1=2 in the zero-point energy
and the degeneracy of each k mode.

For a large system, the sum can be replaced by an
integral. We perform the angular integrations and change
variables from k to frequency, !, obtaining
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where we used the frequency-dependent ��!� via ! �
08040
�c=��!�1=2�k. The superscript �c� signifies an upper cutoff
around the plasma frequency of the walls, as above. By
defining c as a suitable average of the light velocity (i.e.,
c3=c3 � �

R
�c� d!!3��!�3=2�=�

R
�c� d!!3�), one obtains
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We used an approximate equality, since the result was
given for a sharp cutoff. The basic physical assumption
here is that modes below !p give much of their momentum
to the wall, while those above do not. This assumption can
be very easily justified for the 1D waveguide case.

One might try to use here [as in Eq. (3), based on [3] ] the
T � 0 thermodynamic relationship (see also [23]):
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This would produce a negative pressure. However, Eq. (8)
is valid only for a closed system, while the present system
exchanges energy with the continuum levels above the
cutoff at !p. When the volume varies, this happens via
zero-point photon levels moving through the cutoff.
Interestingly, Casimir used the same relationship to calcu-
late the net pressure on each plate. We believe that this may
be justified for pressure differences, but only when the
media on the two sides of each metallic plate are equiva-
lent. This point will be more fully discussed elsewhere.

The pressure of Eq. (7) is not so large but quite signifi-
cant. It is convenient to express it in terms of a Bohr (or
Fermi) pressure PB  10 eV=A3 ’ 1:6� 108 N=cm2. For
@!P � 10 eV and � � 1, we find P0 � 0:5� 10
9PB �
0:1 N=cm2. For comparison, the ordinary Casimir force/
unit area at a distance of 100 nm is on the order of
10
3 N=cm2.

Since the ordinary Casimir force is the result of the near
cancellation of much larger quantities, its sign is notori-
ously difficult to predict, except via detailed calculations
[20,24]. We suggest that some control of the sign can be
achieved [25] by employing polarizable materials as the
electromagnetic vacuum in some part of the system. For a
material with a dielectric constant ��!�, Eq. (6) suggests
that if the suitably averaged value � > 1 (where c 

c=
���
�

p
), which should often happen, the pressure of the

dielectric will exceed that of the vacuum by �P:
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Thus, for example, a metallic wall having a dielectric
medium with such an ��!� on one side and a medium with
� � 1 on the other, both having the same mechanical
pressure, will be attracted into the vacuum [26]. As a
weak example, we take ��!� � 2 up to 0.05 of the metallic
!p and going to 1 above that frequency; this will give a net
force per unit area of �10
6 N=cm2. Thus, for example,
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the volume and the pressure of a fluid depend on both the
optical properties of another fluid separated from the first
by a solid slab and the optical properties of that slab. It may
be possible to observe the displacement of the slab’s posi-
tion and interfaces by changing the dielectrics. One may
also contemplate changing the optical properties of a semi-
conducting slab in the relevant range by using, e.g., in-
duced photoconductivity or gating. The resulting small
changes of the macroscopic dimensions or pressures may
then be observed, in principle, with an interferometric
method or using piezoelectric detectors. This would con-
stitute a macroscopic version of the Casimir effect.

Things become rather interesting also for the ordinary,
mesoscopic-scale Casimir effect. A good check of the
pressure interpretation of the Casimir subtraction is the
following: Consider the case where the medium outside
the plates is ‘‘inert’’ (� � 1) and the medium between them
has an ��!�, with � > 1. The conventional calculations
treat the case in which these two media are identical
[with the same ��!�] [5]. Let us then start with both the
inside and outside media identical and having an ��!�. The
Casimir pressure in this case was calculated in Ref. [5]. We
denote it by Pc���. In the case of interest to us, the medium
outside is inert, so we have to subtract the pressure of the
vacuum rather than the pressure of the dielectric medium.
We then find that the net Casimir pressure is, in our case,

Pc�� inside; 1 outside� � Pc��� 
 P0�� � 1� � P0���:

(10)

Therefore, for sufficiently large ��!� the sign of the force
will change and it will push the plates away. For the
aforementioned example, considered below Eq. (9), this
repulsion will win against the Casimir attraction around a
distance of about 0:8�. For larger distances, the full
Casimir force should ideally be repulsive; see, however,
[26]. (For smaller distances the Casimir force will remain
attractive.) This change of sign is due to the larger ‘‘volume
force’’ due to the dielectric inside.

At distances below c=!p, where quasistationarity holds,
the outside pressure P0 may again be smaller than the
inside Lifshitz pressure. Interesting effects due to dielectric
media placed between or outside of the plates are possible
and will be discussed elsewhere.

We conclude this Letter by examining the Casimir vac-
uum forces on a single flat metallic plate of thickness d. For
large thicknesses, we simply have the two pressures, P0,
from the two sides of the metallic layer [18]. These will
slightly decrease the thickness of the layer, a very interest-
ing effect which can be increased with dielectric materials
as discussed above and might be observable some day. In
addition to the ordinary electromagnetic modes considered
so far, there will be surface plasmons [4,5,28–30] running
on the two interfaces of the layer. For a thick layer, the
energy of these modes will be independent of d, but once d
becomes comparable to the decay lengths of the modes,
08040
their energies will depend on d and lead to a significant
further positive pressure on the metallic plate.

To calculate that pressure, we consider a metallic slab

with a dielectric constant ��!� � 1

!2

p

!2 and of thickness
d � 2a, larger than atomic dimensions, between the planes
z � �a. Following Ref. [28], we approximate in the quasi-
stationary limit, d & c=!p, the full wave equation by the
Laplace one for the electrostatic potential �. We take
without loss of generality a wave propagating in the x
direction, ��x; z� � exp�ikx�u�z�, and find u00 � ku.
Thus u �

P
�A� exp��kz� inside the film, and u is ex-

ponentially decaying in the two vacua (with � � 1) on the
two sides of the film. On the surfaces of the film, � and
� @�

@z are continuous. By symmetry, we choose even and odd
solutions with respect to z � 0, and find the surface plas-
mons’ dispersion relations:
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2

p
�������������������
1� e
kd

p
; (11)

where the upper (lower) sign is for the even (odd) modes.
In the extreme quasistationary limit, d � c=!p, we may
neglect the polariton effect—the coupling of the above
modes with the ‘‘light modes’’ ! � ck. The dispersion of
the latter is extremely steep and intersects the !��k�
dispersion only at very small values of k.

To obtain the force, one needs the derivative with respect
to d of the d-dependent total zero-point energy of these
plasmons. One may either directly take the derivative with
respect to d or first integrate the energies subtracting from
each branch an infinite d-independent constant, which is
the k ! 1 limit of both dispersion curves:
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In both ways, we find for the (positive) pressure exerted by
the vacua on the metallic film a result resembling the
Lifshitz pressure in the nonretarded regime [4,5]:

P�d� �
F�d�

L2 � 0:0078
@!p

d3
: (14)

This pressure is quite substantial and increases markedly
with decreasing d. It would be on the order of 2�
106 N=cm2 for a 1 A thin film—almost approaching the
Fermi pressure scale for atomic thicknesses. The Fermi
(including the Coulomb) pressure will eventually stabilize
the very thin layer against squeezing by the vacuum pres-
sure. The contraction proportional to d
3 of the film in the
thin direction may well be observable on top of other thin-
film effects. These considerations are clearly relevant for
the physics of very thin films.

To summarize, we considered the radiation pressure of
bulk zero-point electromagnetic modes. The dependence
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of the force on the dielectric constant of the electromag-
netic vacuum leads to a novel type of force in asymmetric
situations where the conducting slab has different dielec-
trics on its two sides. Options for controlling the sign in the
Casimir-type geometry are suggested. Finally, the substan-
tial positive pressure, associated with the surface plasmons,
exerted by the electromagnetic vacuum on a thin metallic
film was evaluated and discussed.
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