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Four-Body Problem and BEC-BCS Crossover in a Quasi-One-Dimensional Cold Fermion Gas
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The four-body problem for an interacting two-species Fermi gas is solved analytically in a confined
quasi-one-dimensional geometry, where the two-body atom-atom scattering length aaa displays a
confinement-induced resonance. We compute the dimer-dimer scattering length add and show that this
quantity completely determines the many-body solution of the associated BEC-BCS crossover phenome-
non in terms of bosonic dimers.
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Cold atomic quantum gases continue to attract a lot of
attention due to their high degree of control, tunability, and
versatility. A main topic of interest has been the explora-
tion of the Bose-Einstein condensate (BEC)-BCS cross-
over in fermionic systems [1–6]. In two or three
dimensions, this is still a controversial and not completely
settled issue on the theory side [7–10], despite the quali-
tative agreement between mean-field theories and experi-
mental data. Notably, a similar (but different) crossover
phenomenon has been predicted to occur in quasi-one-
dimensional (1D) systems [11,12], where a cylindrical
trap leads to a confinement-induced resonance (CIR)
[13,14] in the atom-atom interaction strength, analogous
to the magnetically tuned Feshbach resonance [8]. In con-
trast to what happens in 3D, one always has a two-body
bound state (‘‘dimer’’) in 1D, regardless of the sign of the
3D atom-atom scattering length a. We solve the fermionic
four-body problem in the confined geometry, and compute
the dimer-dimer scattering length add throughout the full
BCS-BEC crossover, on each side of the CIR. On the
‘‘BEC’’ side, we establish contact with results for the
unconfined case [15], while on the ‘‘BCS’’ side, a simple
Bethe ansatz calculation provides exact results. The three-
body problem has no trimer solution [16], and thus the full
many-body crossover solution can be expressed in terms of
add alone and is thereby solved completely in this Letter.
Since 1D atomic gases can be prepared and probed thanks
to recent advances [17–19], our predictions could be ob-
served in state-of-the-art experiments.

We assume two fermion hyperfine components (denoted
by "; # ) with identical particle numbers N" � N# � N=2,
interacting only via s-wave interactions. At low ener-
gies, the pseudopotential approximation [20] for the 3D
interaction among unlike fermions applies, V�r� �
�4�@2a=m0�	�r�@r�r�� (m0 is the mass). We consider the
transverse confinement potential Uc�r� � m0!

2
?�x

2 �

y2�=2, with length scale a? � �2@=m0!?�
1=2. The solution

of the two-body problem [13,14] reveals that a single dimer
(composite boson) state exists, where the dimensionless
binding energy �B and (longitudinal) size aB,
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� �a?=2aB�2 > 0; (1)

follow from ��1=2;�B� � 	a?=a with the Hurvitz zeta
function. For an experimental verification, see Ref. [18].
For a?=a! 	1, the BCS limit with �B ’ �a=a?�

2  1
and aB ’ a2?=2jaj is reached, while for a?=a! �1, the
dimer (or BEC) limit emerges, with �B ’ �a?=2a�2 � 1
and aB ’ a. The atom-atom scattering length is

aaa � a?�C	 a?=a�=2; C � 	��1=2� ’ 1:4603:

(2)

For low energies, this result is reproduced by the 1D atom-
atom interaction Vaa�z; z0� � gaa	�z	 z0� with gaa �
	2@2=m0aaa [13]. The CIR (where gaa ! �1) takes place
for a?=a � C, which is equivalent to �B � 1. In this
Letter, we solve the 1D fermionic four-body ( ""## ) prob-
lem and show that this also solves the N-body problem for
arbitrary �B in the low-energy regime.

Let us first discuss general symmetries of the four-body
problem. We denote the positions of the " ( # ) fermions by
x1;4 (x2;3), respectively, and then form distance vectors
between unlike fermions, r1 � x1 	 x2, r2 � x4 	 x3,
and r� � x1 	 x3, r	 � x4 	 x2. The distance vector
between dimers f12g and f34g is R=

���
2

p
� �x1 � x2 	

x3 	 x4�=2. After an orthogonal transformation, the
center-of-mass coordinate decouples and the four-body
wave function 
 depends only on r1;2 and R. With respect
to dimer interchange, 
 is symmetric,


�r1; r2;R� � 
�r2; r1;	R�; (3)

while under the exchange of identical fermions,


�r1; r2;R� � 	
�r�; r�;��r1 	 r2�=
���
2

p
�: (4)

The four-body Schrödinger equation then reads�
	
@
2

m0
��r1 � �r2 � �R� �Uc�r1� �Uc�r2�

�Uc�R� � V�r2� 	 E
�
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i�1;�

V�ri�
: (5)
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The pseudopotentials on the right-hand side are incorpo-
rated via Bethe-Peierls boundary conditions imposed when
a dimer is contracted, e.g.,


�r1; r2;R�jr1!0 ’
f�r2;R�

4�r1
�1	 r1=a�: (6)

All other boundary conditions can also be expressed in
terms of f�r;R� using Eqs. (3) and (4), where

f�r;R� � f�	r;	R� (7)

expresses (parity) invariance of Eq. (5) under r1;2 ! 	r1;2
and R ! 	R in combination with Eq. (3). In order to
appreciate the importance of Eq. (7), it is instructive to
expand f�r;R� in terms of the single-particle eigenfunc-
tions  ��r� and the two-body scattering states ���r� in the
presence of the confinement,

f�r;R� �
X
��

f�����r� ��R�: (8)

The quantum numbers � include the 1D momentum k [21],
the (integer) angular momentumm, and the radial quantum
number n � 0; 1; 2; . . . . Explicit expressions for  � and
�� can be found in Refs. [13,16]. While both have the
same energy E�, the �� now include the dimer bound state
(denoted by � � 0) �0�r�. For relative longitudinal mo-
mentum k of the two dimers, the total energy is (excluding
zero-point and center-of-mass motion)

E � 	2@!?�B �
@
2k2

2m0
: (9)

We consider the low-energy regime ka? < 1, where the
relative dimer motion is in the lowest transverse state (n �
m � 0) when dimers are far apart. We then have to deal
with a 1D dimer-dimer scattering problem in this ‘‘open’’
channel, where the asymptotic 1D scattering state f0�Z�
for jZj � max�a?; jaaaj� follows from Eq. (8) as

f�r;R� � �0�r� ?;00�
������������������
X2 � Y2

p
�f0�Z�; (10)

where  ?;00 is the transverse part of  n�0;m�0. The sym-
metry relation (7) now enforces f0�Z� � f0�	Z�, reflect-
ing the fact that two (composite) bosons collide, i.e.,

f0�Z� � e	ikjZj � �1� 2~f�k��eikjZj: (11)

As long as only s-wave scattering is important, symmetry
considerations thus rule out odd-parity solutions normally
present in 1D scattering problems [13,16]. This crucial
observation implies that, assuming analyticity, the 1D scat-
tering amplitude can be expanded in terms of a 1D dimer-
dimer scattering length add [22],

~f�k� � 	1� ikadd �O�k2�: (12)

For jkaddj  1, this also follows from the zero-range 1D
dimer-dimer potential
08040
Vdd�Z; Z
0� � gdd	�Z	 Z0�; gdd � 	

2@2

�2m0�add
:

(13)

We stress that Eq. (13) holds for arbitrary a?=a, and
therefore 1D dimer-dimer scattering at low energies is
always characterized by a simple 	 interaction.

Let us then analyze the BCS limit, �B  1, where the
scattering problem is kinematically 1D on length scales
exceeding a?. Projecting Eq. (5) onto the transverse
ground state, the 1D Schrödinger equation for four attrac-
tively interacting fermions reads with aaa � a2?=2jaj �
a? [see Eq. (2)],

�
2m0E

@
2 �

X4
i�1

@2zi �
4

aaa

X
i<j

	�zi 	 zj�
�

 � 0; (14)

where the second sum excludes identical fermion pairs,
�i; j� corresponding to f14g and f23g. The Bethe ansatz
expresses the wave function as a sum of products of plane
waves [23]. Let us choose the momenta aaak1;4 � �i	
u=2 and aaak3;2 � �i� u=2 to describe dimer-dimer scat-
tering, and measure lengths in units of aaa. The energy of
this state is E � @

2�	2� u2=2�=�m0a2aa� and u the relative
momentum of the two dimers. Up to an overall normaliza-
tion constant, the wave function in the domain D1 �
f�z1; z4�< �z3; z2�g must then be given by


1 � e	�z2�z3	z4	z1��eiu�z2�z4	z3	z1�=2 	 eiu�z2�z1	z3	z4�=2

� eiu�z3�z1	z2	z4�=2 	 eiu�z3�z4	z2	z1�=2�

to ensure a normalizable and antisymmetric solution under
the exchange of identical fermions. Consider next a second
domain, D2 � fz1 < z3 < z4 < z2g, where z3 and z4 are
exchanged compared to D1. At the boundary between D1

and D2, z3 � z4, Eq. (14) implies 
1 � 
2 and �@z3 	
@z4��
1 	
2� � 	4
1 [24], leading to


2 � 2Re
�
e	�z2�z3	z4	z1�

iu
2� iu

eiu�z2�z4	z3	z1�=2

� e	�z2�z4	z3	z1�

�

�
2

2� iu
eiu�z2�z3	z4	z1�=2 	 2eiu�z2�z1	z4	z3�=2�

��
:

The wave function in other domains can be found in a
similar manner. As a result, for a large dimer-dimer dis-
tance Z, 
 / e	jz�je	jz	jf0�Z�, where e	jz�j is the 1D
wave function of the dimers f13g and f24g, respectively.
This result shows explicitly that even in the BCS limit, the
two dimers are not broken in the collision even for large k.
There is no coupling to additional fermionic states, and the
composite nature of the dimer is not apparent in 
. The 1D
scattering state f0�Z� [see Eq. (11)] has the exact scattering
amplitude

~f�k� � 	
1

1� ikadd
; add �

aaa
2

�
a2?
4jaj

; (15)
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which reproduces the full scattering amplitude derived
from Eq. (13) and not just the first order as in Eq. (12).
The bound state at imaginary k predicted by Eq. (15) is,
however, unphysical, since the corresponding Bethe ansatz
solutions are then not normalizable. It would correspond to
a nonexistent bound four-fermion (tetramer) state, and
hence Eq. (15) is restricted to the real axis.

Let us now turn to the many-body problem, starting with
the BCS limit. Since dimers are not broken in the collision,
the ground state can be described in terms of N=2 bosons
(‘‘bosonization’’) with the interaction (13) and add �
aaa=2. The attractively interacting Bose gas is stabilized
by the real-k restriction, implying the omission of many-
body bosonic bound states. Bosonization is possible for
'a? < 1, since typical momenta are k � ' for total 1D
fermionic density '. This reasoning immediately leads to
the famous Lieb-Liniger (LL) equations [25],

E0

N
� 	@!?�B �

1

'

Z K0

	K0

dk
@
2k2

4m0
f�k�; (16a)

2�f�k� � 1	
4

add

Z K0

	K0

dp
f�p�

4=a2dd � �p	 k�2
; (16b)

where E0 is the ground state energy and K0 is fixed by
'=2 �

RK0
	K0

dkf�k�. Notably, since add � aaa=2, the LL
equations coincide with Yang-Gaudin equations for N
attractively interacting 1D fermions, thereby explaining a
deep connection noticed previously [11,12,26]. Moving
towards the dimer limit, Eq. (13) still applies, but now
only for sufficiently small k such that Eq. (12) holds, and
add � aaa=2. For add & a?, one leaves the BCS regime
08040
and enters the ‘‘crossover regime,’’ while (once add < 0)
the dimer regime is realized for jaddj * a?. Within the
crossover regime, jaddj & a?, we have hard-core bosons
that can effectively be fermionized [11,12], again implying
typical momenta k � '. For 'a? < 1, the condition
jkaddj  1 imposed by Eq. (12) is therefore safely fulfilled
throughout the crossover regime. Finally, in the dimer
limit, a < a?, fermions form very tightly bound dimers.
The confinement can then not influence the four-body
collision, which is therefore described by a 3D zero-range
interaction with a3Ddd � 0:6a [15]. However, for dimer-
dimer distance larger than a?, dimers eventually must
occupy the transverse ground state; see Eq. (10). In effect,
for 'a? < 1, we recover a 1D (bosonic) two-body prob-
lem, where Eq. (2) gives the answer (exact for �B � 1),

add � 	
a2red;?
2�0:6a�

; ared;? � �@2=m0!?�
1=2; (17)

where ared;? is the transverse oscillator length for dimers.
To summarize this discussion, we have shown that (a) as
long as the single condition ka? < 1 holds, dimer-dimer
scattering is described by Eq. (13) for arbitrary a?=a, and
(b) knowledge of add and hence the solution of the 1D four-
body problem is sufficient to completely solve the 1D
BEC-BCS many-body problem for dilute systems, 'a? <
1, in terms of the LL Eq. (16).

Next we discuss the 1D four-body problem. Enforcing
the boundary condition (6) or the other equivalent ones,
Eq. (5) leads to an integral equation for f�r;R� [15,16].
Using Eq. (8), some algebra [27] yields
� � � � 2 X

� 1=2;

E� � E� 	 E

2@!?

	 ��1=2;�B� f�� �
4�@ a?���

2
p
m0 �0�0

G�0�0
�� f�0�0 ;

G�0�0
�� �

X
�

Z
drdRGE	E�	E���r�

���
2

p
R�=2; 0���

�

�
r�

���
2

p
R

2

�
 �
�

�
�

r���
2

p

�
��0 �r� �0 �R�:

(18)
The two-body Green’s function GE�r; 0� can be found in
Ref. [16]. The 2 degrees of freedom in f�r;R� imply two
different types of ‘‘closed’’ channels that may be excited in
a dimer-dimer collision: (i) scattering states above the
bound state for each dimer [corresponding to r or � in
Eq. (8)], and (ii) excited states in the transverse direction
for the relative motion of two dimers [corresponding to R
or � in Eq. (8)]. Neglecting both types of closed-channel
excitations, Eq. (18) can be solved numerically for arbi-
trary a?=a as in Ref. [16]. The result is shown in the inset
of Fig. 1. In addition, this approximation allows one to
extract add in both limits analytically: in the dimer limit,
we find add � 	,0a2?=�2a� � 2,1a, where ,0 � 1=4 and
,1 ’ 0:319, while in the BCS limit, add � -0a

2
?=jaj with

-0 ’ 0:402. The exact (numerical) result for arbitrary
a?=a agrees to within �0:05 in add=a? with a simple
interpolation formula obtained by simply adding these
two limiting results. For practical purposes, the interpola-
tion is therefore virtually exact. Let us then turn to the
effects of closed-channel excitations. In the BCS limit,
excitations of type (ii) are irrelevant [16], but type-(i)
excitations are important. Their inclusion results in the
exact value -0 � 1=4 [see Eq. (15)], which also follows
from the solution of Eq. (18) including type-(i) excitations
[27]. In the dimer limit, inclusion of the closed channels
leads to the correct value ,0 � 0:83; see Eq. (17).
Incidentally, the two excitation types can be disentangled
[27], and we find a3Ddd � 0:66a by just neglecting type-(i)
excitations, which is already close to the exact value a3Ddd �
0:6a [15]. Type-(ii) excitations are obviously important in
the dimer limit, which may be valuable input for diagram-
matics [11,28]. The exact limiting results for add are shown
in the main part of Fig. 1 as dashed curves. For the full
crossover, the additive interpolation formula is again ex-
pected to be highly accurate. Notably, this predicts add � 0
for �B � 0:3. At this point, a CIR for dimer-dimer scat-
tering occurs [see Eq. (13)] where the interaction strength
gdd diverges and changes sign. Interestingly, the dimer-
3-3
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FIG. 1. Scattering length add as a function of �B. Dashed
curves give exact limiting results, and the solid curve interpo-
lates by adding these. Inset: Same but neglecting all closed-
channel excitations. Here the solid curve gives the exact result.
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dimer CIR takes place at a different value for �B (and
hence a?=a) than the atom-atom CIR.

In experiments, quasi-1D regimes can be obtained in
arrays of very elongated traps with a shallow confinement
in the longitudinal direction. Typical trap frequencies are
!?=2� � 70 kHz and !z=2� � 250 Hz, with N � 100
atoms per tube to ensure the 1D condition N <!?=!z

[18]. The BCS-BEC crossover can be investigated using a
Feshbach resonance, which leads to changes in the density
profile [11], excitation gaps [12], and ground state energy
that can be probed via release energy [5] and rf spectros-
copy measurements [6,18]. A probably more precise ap-
proach is to measure collective axial modes. The dipole
mode frequency is always !z, irrespective of interactions.
Using a sum rule approach [29], we calculated the fre-
quency of the lowest compressional (breathing) mode from
!2 � 	2�d lnhz2i=d!2

z�
	1 (see Fig. 2) by solving Eq. (16)

using our results for add. Limiting values are ! �
���
3

p
!z in

the dimer limit, and ! � 2!z both in the BCS limit and
close to add � 0. We hope that this prediction will soon be
tested.
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FIG. 2. Squared ratio of breathing and dipole mode frequency
as a function of 	a?=a. Here we have chosen N!z=!? � 1=3.
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