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Simple and Surprisingly Accurate Approach to the Chemical Bond Obtained
from Dimensional Scaling
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We present a new dimensional scaling transformation of the Schrödinger equation for the two electron
bond. This yields, for the first time, a good description of the bond via D scaling. There also emerges, in
the large-D limit, an intuitively appealing semiclassical picture, akin to a molecular model proposed by
Bohr in 1913. In this limit, the electrons are confined to specific orbits in the scaled space, yet the uncer-
tainty principle is maintained. A first-order perturbation correction, proportional to 1=D, substantially
improves the agreement with the exact ground state potential energy curve. The present treatment is very
simple mathematically, yet provides a strikingly accurate description of the potential curves for the lowest
singlet, triplet, and excited states of H2. We find the modified D-scaling method also gives good results for
other molecules. It can be combined advantageously with Hartree-Fock and other conventional methods.
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FIG. 1. Potential energy (solid curves) of the ground and a few
excited states of H2 obtained from the Bohr model with
D-scaling analysis. Dots are the exact energies [12]. The inset
figures on the right-hand side depict the two nuclei of charge Z
and Bohr’s ‘‘planetary’’ orbits for the electrons in the 1��

g and
3��

u states (see also Fig. 4). Dashed curves are from the Heitler-
London treatment [14].
Quantum chemistry has achieved excellent agreement
between theory and experiment, even for large molecules,
by using computational power to overcome the difficulty of
treating electron-electron interactions [1–4]. Here we
present a new version of an unconventional method to treat
electronic structures [5–8]. This emulates an approach
developed in quantum chromodynamics [9], by generaliz-
ing the Schrödinger equation to D dimensions and rescal-
ing coordinates [7].

Early work found the tutorial D-scaling procedure of
Witten [9] can be dramatically improved; the ground state
energy of He was obtained accurate to 5 significant figures
by interpolation between the D � 1 and D ! 1 limits [5],
and to 9 figures by a perturbation expansion in 1=D [10].
However, the scaling procedure that worked well for atoms
[5,6] did not prove successful for two-center problems
[7,8]; e.g., for H2 that procedure did not yield a bound
ground state.

In our present approach, the large-D limit makes contact
with the Bohr model of the H2 molecule [11]. In this way
we obtain, for the first time, a link between prequantum
and postquantum mechanical descriptions of the chemical
bond (Bohr-Sommerfeld vs Heisenberg-Schrödinger).
Marked improvement is achieved by including the leading
correction term in 1=D and a rudimentary adjustment of
the D scaling. Figure 1 shows potential energy curves for
H2 obtained with our simple approach. Dots comprise a
synthesis of experimental data and computations employ-
ing many terms in variational wave functions [12]. Our
simple method gives surprisingly accurate results and
holds promise for numerous applications.

We first outline our method as applied to H2 and then
indicate how it differs from what preceded [7,8]. Figure 2
displays electron distances in the H2 molecule. All dis-
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FIG. 2. Electronic distances in H2 molecule. The nuclei A and
B are fixed a distance R apart.

FIG. 3. Energy E�R� of H2 molecule in the limit D ! 1
calculated from Eq. (7) (dashed curve) and from the Bohr model
of Eq. (6) (solid curves). Curve 1 corresponds to a symmetric
configuration obtained by Bohr [11] and pictured in Fig. 4 (top).
Curve 2 describes an asymmetric solution (not found by Bohr);
see Fig. 4 (bottom). Lower solid curve is the improved ground
state E�R� after including 1=D correction.
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The Coulomb potential energy V is given by
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in terms of distances defined in Fig. 2. In cylindrical
coordinates
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where R is the internuclear spacing and � the dihedral
angle between the planes containing the electrons (i �
1; 2) and the internuclear axis.

We proceed by endowing each vector with D Cartesian
coordinates [7]. The potential energy V is retained [13] in
the three-dimensional form of Eq. (1), whereas the
Laplacians in the kinetic energy take the form
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We then scale coordinates by f2 and energy by 1=f2, with
f � �D� 1�=2, and transform the wave function � by

� � �	1	2�
��D�2�=2�: (3)

This recasts the Schrödinger equation as

�K1 � K2 �U� V�� � E�; (4)
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In the limit D ! 1 the derivative terms in Ki are
quenched. The corresponding energy E1 for any given
internuclear distance R is then obtained simply as the
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extremum of the effective potential, U� V, given by
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This is exactly the energy function that applies to the Bohr
model of the molecule [11].

The usual D-scaling procedure [7,8] involves setting up
the full Laplacian in D dimension and transforming the
wave function by incorporating the square root of the
Jacobian via � ! J�1=2�, where J � �	1	2�

D�2 	
�sin��D�3. Then, on scaling the coordinates by f2 and
the energy by 1=f2, the Schrödinger equation in the limit
D ! 1 yields
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which differs from Eq. (6) by the factor 1=sin2�.
Our procedure, designed to reduce to the Bohr model at

the large-D limit, instead incorporates only the radial
portion of the Jacobian in transforming the wave function
via Eq. (3). This has important consequences. Figure 3
displays the D ! 1 potential energy curve of Eq. (7)
(dashed curve, ‘‘full J’’), which exhibits no binding.
However, our ‘‘Bohr model’’ limit obtained from Eq. (6)
yields a good zero-order approximation for the ground
state (curve 2 in Fig. 3). It is surprisingly accurate at
both large and small internuclear distances R. Also, the
model predicts the ground state is bound with an equilib-
rium separation Re � 8=�9�

���
3

p
� � 1:10 and gives the

binding energy as EB � 3�2�
���
3

p
�=8 a:u: � 0:100 a:u: �

2:73 eV. The Heitler-London calculation (shown in Fig. 1,
dashed curve), obtained from a two-term variational func-
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FIG. 4 (color online). Distribution of the electron charge den-
sity in the H2 molecule along the molecular axis z. The nuclei are
fixed a distance R apart. Circles are electron orbits in Bohr’s
model.
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tion, gives Re � 1:51 and EB � 3:14 eV [14], whereas the
‘‘exact’’ results are Re � 1:401 and EB � 4:745 eV [1].

For the triplet 3��
u state, as seen in Fig. 1, the Bohr

model energy function of Eq. (6) gives a remarkably close
agreement with the exact potential curve and is, in fact,
much better than the Heitler-London result (which, e.g., is
30% high at R � 2).

In essence, D-scaling procedures resemble gauge trans-
formations. Many varieties of scaling are feasible, subject
only to the constraint that as D ! 3 the scaled Schrödinger
equation reduces to the correct form. The basic aim is to
devise a scaling that removes the major, generic D depen-
dence, enabling the easily evaluated D ! 1 limit to ap-
proximate the D � 3 energy. With the ‘‘full-J’’ scaling
previously used [8], when D is increased the �sin��D�3

factor in the Jacobian forces � towards 90�, while mini-
mization of electron-electron repulsion requires � !
180�. The effect is to overweight electron repulsion; this
is the chief source of the failure to obtain chemical bonding
in previous work. Our new procedure avoids such over-
weighting by retaining the D � 3 form for the � part of
both the Jacobian and the Laplacian of Eq. (2). Thereby �
remains a fully quantum variable as D ! 1, rather than
being converted to a semiclassical parameter along with
the 	 and z coordinates. This much improves the descrip-
tion of the electron repulsion and hence the chemical
bonding.

The scaling procedure enables, in the large-D limit,
calculations to be carried out in the scaled space that are
entirely classical. The extremum equations @E=@z � 0 and
@E=@	 � 0 are equivalent to Newton’s second law applied
to the motion of each electron. Respectively, they specify
that the net Coulomb force on the electron along the z axis
vanishes and that the projection of the Coulomb force
perpendicular to the molecular axis balances the centrifu-
gal force. Although the electrons are thereby confined to
specific orbits in the scaled space, the uncertainty principle
is nonetheless satisfied. This is so because the conjugate
momenta are scaled inversely to the coordinates, leaving
the position-momentum commutator invariant. The con-
tinuous transition between the scaled space and the un-
scaled space in effect relates classical trajectories at
large-D to corresponding quantum distributions at D � 3.
This aspect becomes particularly evident when treating
electronic tunneling [7].

Figure 4 displays the exact electron charge density along
the molecular axis in the ground state of H2 for internuclear
spacing R � 0:8 and 1.4 a.u. Circles show electron orbits
in Bohr’s model. The orbit positions for any R actually
coincide with the maxima in the charge density. This
provides a link between the wave mechanical and Bohr
(D ! 1 limit) treatments of the H2 bond.

The ground state E�R� can be substantially improved by
the use of a perturbation expansion in powers of 1=D,
developed by expanding the effective potential of Eq. (6)
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in powers of the displacement from the minimum [7]; for
He this has yielded highly accurate results [10]. Terms
quadratic in the displacement describe harmonic oscilla-
tions about the minimum and give a 1=D correction to the
energy. A symmetry breaking point occurs at Rc � 1:2,
beyond which the electron orbits move apart (cf. Fig. 4).
Such symmetry breaking is a typical feature exhibited as Z
or R is varied at large D [7,15]. The 1=D correction works
well at points substantially below or above Rc. Results for
those regions thus can be combined. This involves trans-
forming the axial coordinates to z1 
 z2, in order to sepa-
rate the double-well structure that occurs in z1 � z2. With
the other coordinates fixed at their values at the minimum
of U� V, a one-dimensional Schrödinger equation is
solved to take into account the double-well mode. This
contribution to the 1=D correction corresponds to electron
resonance or exchange. The result gives good agreement
with the exact E�R� over the full range of R (lower solid
curve in Fig. 3). The 1=D correction predicts the equilib-
rium separation to be Re � 1:38 with binding energy EB �
4:50 eV.

The Bohr and D-scaling techniques taken together hold
promise for numerous applications. In particular, these
provide a new approach to treating excited states. For
example, in our analysis the energy of the 1s2s state of
the He atom is obtained as an extremum of the energy
function E � n21=2r

2
1 � n22=2r

2
2 � V�r1; r2�, where n1 � 1

and n2 � 2; r1, r2 are electron radius vectors and V is the
Coulomb potential energy. This yields the value of
�2:159 a:u:, which differs by 0.7% from the exact 1s2s
energy of �2:144 a:u: For other excited states of He as
well as more complex atoms, the combination of the Bohr
and D-scaling approaches also provides accurate results;
we will discuss this elsewhere.
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FIG. 5. Ground state E�R� of HeH, He2, and BeH molecules
calculated within the Bohr model (solid curves). The HeH curve
is shifted down for clarity.
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Figure 1 demonstrates application of our technique to a
few excited states of the H2 molecule. In treating 1��

g

excited states, we incorporate D-scaling analysis at large
R and the exact E�R� of the H�

2 molecular ion, which
provides a good description in the remaining region. We
have also found the present D ! 1 limit (Bohr model)
gives good results for other molecules; examples so far
treated include HeH, He2, and BeH, pictured in Fig. 5, and
LiH, Li2, Be2, and the triatomics BeH2 and H3 [16].

Another useful strategy is to combine the present ap-
proach with conventional electronic structure methods. At
D � 3, evaluation of the correlation energy, Ecorr (error in
the Hartree-Fock approximation) is the major difficulty.
However, at D ! 1, Ecorr can be evaluated exactly. Re-
sults for He and other atoms [7] show that Ecorr for D ! 1
is smaller than but comparable to that for D � 3. For the
ground state of H2 we find an accurate energy curve E�R�
can be obtained by adding the D ! 1 correlation energy
to the E�R� given by the Heitler-London effective charge
method. The result is practically identical to the curve
obtained from the 1=D correction (Figs. 1 and 3).

Our modified D-scaling procedure reincarnates the Bohr
model. This requires only elementary concepts and (lap-
top) computations yet provides a rather good description of
electron-electron interaction and chemical bonding. The
procedure is readily applicable to many-electron mole-
cules, both ground and excited states. These results encour-
age efforts to further improve D scaling and to augment
conventional variational methods for the electronic struc-
ture to incorporate the exact correlation energy attainable
at the large-D limit.
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