Comment on "Interference Effect in Electron Emission in Heavy Ion Collisions with H₂ Detected by **Comparison with the Measured Electron Spectrum** from Atomic Hydrogen"

Recently, Misra et al. [1] investigated interferences in electron emission from H_2 by $\sim \text{MeV}/u$ C and F ions. It was argued that ratios of measured emission cross sections for H₂ and H are more appropriate for revealing interferences than previously used ratios of measured H₂ to theoretical H cross sections [2-4]. We show, however, that normalization to measured H cross sections introduces structures due to differences in the Compton profiles (electron velocity distribution along the beam direction) for H₂ and H that can obscure expected interference structures.

To identify the relatively small interference structures, a normalized ratio is used [2,3]:

$$(\sigma_{\rm H_2})_{\rm norm} = \frac{d^2 \sigma_{\rm H_2}}{d\Omega d\varepsilon} / \frac{d^2 \sigma_{\rm 2H}}{d\Omega d\varepsilon}$$

$$= \int \frac{d^3 \sigma_{\rm 2H}}{d\mathbf{q} d\Omega d\varepsilon}$$

$$\times \left[1 + \frac{\sin|\mathbf{k} - \mathbf{q}|d}{|\mathbf{k} - \mathbf{q}|d} \right] d\mathbf{q} / \int \frac{d^3 \sigma_{\rm 2H}}{d\mathbf{q} d\Omega d\varepsilon} d\mathbf{q}, \quad (1)$$

where $\sigma_{\rm H_2}$ and $\sigma_{\rm 2H}$ are the cross sections for electron emission from H_2 and two H atoms, respectively, and $d\Omega$ and $d\varepsilon$ are the solid angle and energy of the ejected electron. The sinusoidal term represents the interference due to coherent emission from the H centers, where \mathbf{k} is the ejected electron velocity, q the momentum transfer, and d the H₂ internuclear separation. Previously [3], measured H₂ cross sections were normalized to theoretical continuum distorted wave-eikonal initial state (CDW-EIS) [5] H cross sections using $Z_{\text{eff}} = 1.19$ (Z_T in Ref. [1]) in Eq. (1) to represent the molecular Compton profile [6].

Measured H₂ electron emission cross sections for 1 MeV/u C⁶⁺ normalized to measured H cross sections from Ref. [1] are reproduced in Fig. 1 along with the calculated interference behavior (dashed curves) from CDW-EIS theory. The broad peak near 4 a.u. is attributed to interference in Ref. [1]. Also shown is the calculated CDW-EIS ratio (solid curves) obtained in the present work [5] using $Z_{\rm eff}=1.19$ in the numerator of Eq. (1) with the sinusoidal term set to zero (i.e., no interference) and $Z_{eff} =$ 1.0 in the denominator to represent the noninterfering cross section ratio for H₂ to H but including effects due to the different Compton profiles. These differences are most important in the electron velocity range of the binary encounter peak centered at the positions indicated by the arrows. The minima and maxima in the solid curves are due, respectively, to the smaller central value and broader Compton profile of H₂ compared to H.

The calculations without interference predict rather well the behavior of the data contrary to the calculations of Ref. [1] that include interference. Thus, the structure in

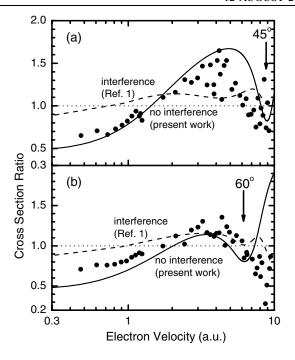


FIG. 1. Cross section ratios [from Eq. (1)] for electron emission from H₂ by 1 MeV/u C⁶⁺ for (a) 45° and (b) 60°. The data and the dashed curves (interference) are from Ref. [1]. The smooth curves (no interference) were calculated in the present work [5] (see text).

the 1 MeV/u C⁶⁺ data presented in Ref. [1] can be explained mainly on the basis of differences in the Compton profiles of H2 and H, demonstrating that if ratios of experimental data are used particular attention must be paid to contributions from these noninterference structures [6] before interference behavior can be revealed.

This work was supported in part by U.S. DOE-BES, NSF International Program, and Hungarian OTKA.

J. A. Tanis, ¹ S. Hossain, ¹ B. Sulik, ² and N. Stolterfoht ³ Department of Physics Western Michigan University Kalamazoo, Michigan 49008, USA

²Institute of Nuclear Research (ATOMKI)

H-4001 Debrecen, Hungary

³Hahn-Meitner-Institut GmbH D-14109 Berlin, Germany

Received 25 June 2004; published 10 August 2005

DOI: 10.1103/PhysRevLett.95.079301

PACS numbers: 34.50.Fa

- [1] D. Misra et al., Phys. Rev. Lett. 92, 153201 (2004).
- [2] N. Stolterfoht et al., Phys. Rev. Lett. 87, 023201 (2001).
- [3] N. Stolterfoht et al., Phys. Rev. A 67, 030702(R) (2003).
- [4] S. Hossain et al., Nucl. Instrum. Methods Phys. Res., Sect. B 205, 484 (2003).
- L. Gulyás, P. D. Fainstein, and A. Salin, J. Phys. B 28, 245
- [6] M. E. Galassi et al., Phys. Rev. A 66, 052705 (2002).